Quivers, Floer cohomology, and braid group actions
HTML articles powered by AMS MathViewer
- by Mikhail Khovanov and Paul Seidel;
- J. Amer. Math. Soc. 15 (2002), 203-271
- DOI: https://doi.org/10.1090/S0894-0347-01-00374-5
- Published electronically: September 24, 2001
- PDF | Request permission
Abstract:
We consider the derived categories of modules over a certain family $A_m$ ($m \geq 1$) of graded rings, and Floer cohomology of Lagrangian intersections in the symplectic manifolds which are the Milnor fibres of simple singularities of type $A_m.$ We show that each of these two rather different objects encodes the topology of curves on an $(m+1)$-punctured disc. We prove that the braid group $B_{m+1}$ acts faithfully on the derived category of $A_m$-modules, and that it injects into the symplectic mapping class group of the Milnor fibers. The philosophy behind our results is as follows. Using Floer cohomology, one should be able to associate to the Milnor fibre a triangulated category (its construction has not been carried out in detail yet). This triangulated category should contain a full subcategory which is equivalent, up to a slight difference in the grading, to the derived category of $A_m$-modules. The full embedding would connect the two occurrences of the braid group, thus explaining the similarity between them.References
- V. I. Arnol′d, Some remarks on symplectic monodromy of Milnor fibrations, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 99–103. MR 1362824
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U(\mathfrak {sl}_2)$ via projective and Zuckerman functors, Selecta Math. (N.S.) 5 (1999), no. 2, 199–241. MR 1714141, DOI 10.1007/s000290050047
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51, DOI 10.1215/S0012-7094-39-00542-9
- Joan S. Birman and Hugh M. Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2) 97 (1973), 424–439. MR 325959, DOI 10.2307/1970830
- Egbert Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76–102 (German). MR 206973, DOI 10.1007/BF01361440
- Y. Eliashberg, H. Hofer, and D. Salamon, Lagrangian intersections in contact geometry, Geom. Funct. Anal. 5 (1995), no. 2, 244–269. MR 1334868, DOI 10.1007/BF01895668 fathi-laudenbach-poenaru A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque, vol. 66–67, Soc. Math. France, 1979.
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- Andreas Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988), no. 4, 393–407. MR 933228, DOI 10.1002/cpa.3160410402
- Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
- Andreas Floer, Helmut Hofer, and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), no. 1, 251–292. MR 1360618, DOI 10.1215/S0012-7094-95-08010-7
- Kenji Fukaya, Morse homotopy, $A^\infty$-category, and Floer homologies, Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993) Lecture Notes Ser., vol. 18, Seoul Nat. Univ., Seoul, 1993, pp. 1–102. MR 1270931 fukaya97 —, Floer homology for three-manifolds with boundary I, Preprint, 1997.
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306, DOI 10.1007/978-3-662-03220-6
- Frederick M. Goodman and Hans Wenzl, The Temperley-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), no. 2, 307–334. MR 1242201, DOI 10.2140/pjm.1993.161.307
- André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 145538, DOI 10.1007/BF02566892
- H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563. MR 1244912, DOI 10.1007/BF01232679 huerfano-khovanov S. Huerfano and M. Khovanov, A category for the adjoint representation, math.QA/0002087. ir R. S. Irving, Projective modules in the category $\mathcal O$, preprint, 1982. khovanov98 M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no.3, 359–426; math.QA/9908171.
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- Paul Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1103994, DOI 10.1142/0983
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1373431
- John Atwell Moody, The Burau representation of the braid group $B_n$ is unfaithful for large $n$, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 379–384. MR 1098347, DOI 10.1090/S0273-0979-1991-16080-5
- Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, DOI 10.1002/cpa.3160460702
- Yong-Geun Oh, On the structure of pseudo-holomorphic discs with totally real boundary conditions, J. Geom. Anal. 7 (1997), no. 2, 305–327. MR 1646780, DOI 10.1007/BF02921725 oh-new —, Floer theory for non-compact Lagrangian submanifolds, Preprint, 2000.
- Marcin Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 119–181. MR 1736217, DOI 10.1090/trans2/196/08
- Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874, DOI 10.1016/0040-9383(93)90052-W RZ R. Rouquier and A. Zimmermann, Picard groups for derived module categories, preprint, 1998, http://www.math.jussieu.fr/$\tilde {\hspace {0.05in}}$rouquier/.
- Dietmar Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990), no. 2, 113–140. MR 1045282, DOI 10.1112/blms/22.2.113
- Dietmar Salamon and Eduard Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), no. 10, 1303–1360. MR 1181727, DOI 10.1002/cpa.3160451004
- Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103–149 (English, with English and French summaries). MR 1765826, DOI 10.24033/bsmf.2365
- Paul Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999), no. 1, 145–171. MR 1743463 seidel-thomas99 P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108; math.AG/0001043. desilva98 V. De Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. thesis, Oxford University, 1998.
- Claude Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987), no. 3, 361–390 (French, with English summary). MR 926533, DOI 10.24033/bsmf.2082
- Alan Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. (2) 98 (1973), 377–410. MR 331428, DOI 10.2307/1970911
- B. W. Westbury, The representation theory of the Temperley-Lieb algebras, Math. Z. 219 (1995), no. 4, 539–565. MR 1343661, DOI 10.1007/BF02572380
Bibliographic Information
- Mikhail Khovanov
- Affiliation: Department of Mathematics, University of California at Davis, Davis, California 95616-8633
- MR Author ID: 363306
- Email: mikhail@math.ucdavis.edu
- Paul Seidel
- Affiliation: Department of Mathematics, Ecole Polytechnique, F-91128 Palaiseau, France – and – School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- MR Author ID: 613874
- Email: seidel@math.polytechnique.fr, seidel@math.ias.edu
- Received by editor(s): July 6, 2000
- Received by editor(s) in revised form: April 3, 2001
- Published electronically: September 24, 2001
- Additional Notes: The first author was supported by NSF grants DMS 96-27351 and DMS 97-29992 and, later on, by the University of California at Davis. The second author was supported by NSF grant DMS-9304580 and by the Institut Universitaire de France.
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 203-271
- MSC (2000): Primary 18G10, 53D40, 20F36
- DOI: https://doi.org/10.1090/S0894-0347-01-00374-5
- MathSciNet review: 1862802