## Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs

HTML articles powered by AMS MathViewer

- by Luis A. Caffarelli, Mikhail Feldman and Robert J. McCann
- J. Amer. Math. Soc.
**15**(2002), 1-26 - DOI: https://doi.org/10.1090/S0894-0347-01-00376-9
- Published electronically: July 31, 2001
- PDF | Request permission

## Abstract:

Given two densities on $\mathbf {R}^n$ with the same total mass, the Monge transport problem is to find a Borel map $s:\mathbf {R}^n \to \mathbf {R}^n$ rearranging the first distribution of mass onto the second, while minimizing the average distance transported. Here distance is measured by a norm with a uniformly smooth and convex unit ball. This paper gives a complete proof of the existence of optimal maps under the technical hypothesis that the distributions of mass be compactly supported. The maps are not generally unique. The approach developed here is new, and based on a geometrical change-of-variables technique offering considerably more flexibility than existing approaches.## References

- AlbertiKircheimPreiss00v G. Alberti, B. Kircheim and D. Preiss. Presented in a lecture by Kircheim at the Scuola Normale Superiori workshop, October 27, 2000. See also [2, Remark 6.1].
Ambrosio00p L. Ambrosio. Lecture notes on optimal transport problems. To appear with Proceedings of a Centro Internazionale Matematico Estivo Summer School in the Springer-Verlag Lecture Notes in Mathematics Series.
- Keith Ball, Eric A. Carlen, and Elliott H. Lieb,
*Sharp uniform convexity and smoothness inequalities for trace norms*, Invent. Math.**115**(1994), no. 3, 463–482. MR**1262940**, DOI 10.1007/BF01231769 - Luis A. Caffarelli,
*Allocation maps with general cost functions*, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., vol. 177, Dekker, New York, 1996, pp. 29–35. MR**1371577** - Lawrence C. Evans,
*Partial differential equations and Monge-Kantorovich mass transfer*, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 65–126. MR**1698853** - Lawrence C. Evans,
*Partial differential equations*, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR**1625845**, DOI 10.1090/gsm/019 - L. C. Evans and W. Gangbo,
*Differential equations methods for the Monge-Kantorovich mass transfer problem*, Mem. Amer. Math. Soc.**137**(1999), no. 653, viii+66. MR**1464149**, DOI 10.1090/memo/0653 - Lawrence C. Evans and Ronald F. Gariepy,
*Measure theory and fine properties of functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR**1158660** - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325** - Herbert Federer,
*Curvature measures*, Trans. Amer. Math. Soc.**93**(1959), 418–491. MR**110078**, DOI 10.1090/S0002-9947-1959-0110078-1 - Mikhail Feldman,
*Variational evolution problems and nonlocal geometric motion*, Arch. Ration. Mech. Anal.**146**(1999), no. 3, 221–274. MR**1720391**, DOI 10.1007/s002050050142
FeldmanMcCann00 M. Feldman, R.J. McCann. Uniqueness and transport density in Monge’s mass transportation problem. To appear in - Wilfrid Gangbo and Robert J. McCann,
*Optimal maps in Monge’s mass transport problem*, C. R. Acad. Sci. Paris Sér. I Math.**321**(1995), no. 12, 1653–1658 (English, with English and French summaries). MR**1367824** - Wilfrid Gangbo and Robert J. McCann,
*The geometry of optimal transportation*, Acta Math.**177**(1996), no. 2, 113–161. MR**1440931**, DOI 10.1007/BF02392620 - Sergio Sispanov,
*Generalización del teorema de Laguerre*, Bol. Mat.**12**(1939), 113–117 (Spanish). MR**3**
Kantorovich42 L. Kantorovich. On the translocation of masses. - Lawrence M. Graves,
*The Weierstrass condition for multiple integral variation problems*, Duke Math. J.**5**(1939), 656–660. MR**99**
Rokhlin49 V.A. Rokhlin. On the fundamental ideas of measure theory. - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - V. N. Sudakov,
*Geometric problems in the theory of infinite-dimensional probability distributions*, Proc. Steklov Inst. Math.**2**(1979), i–v, 1–178. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). MR**530375**
TrudingerWang00 N.S. Trudinger, X.-J. Wang. On the Monge mass transfer problem. To appear in

*Calc. Var. Partial Differential Equations*. FeldmanMcCann01 M. Feldman, R.J. McCann. Monge’s transport problem on a Riemannian manifold. Submitted to

*Trans. Amer. Math. Soc.*

*C.R. (Doklady) Acad. Sci. URSS (N.S.)*, 37:199–201, 1942. McCann99p R.J. McCann. Polar factorization of maps on Riemannian manifolds. To appear in

*Geom. Funct. Anal.*Monge81 G. Monge. Mémoire sur la théorie des déblais et de remblais.

*Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année*, pages 666–704, 1781.

*Mat. Sbornik (N.S.)*, 25(67):107–150, 1949.

*Calc. Var. Partial Differential Equations*.

## Bibliographic Information

**Luis A. Caffarelli**- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712-1082
- MR Author ID: 44175
- Email: caffarel@math.utexas.edu
**Mikhail Feldman**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 226925
- Email: feldman@math.wisc.edu
**Robert J. McCann**- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- MR Author ID: 333976
- ORCID: 0000-0003-3867-808X
- Email: mccann@math.toronto.edu
- Received by editor(s): March 15, 2000
- Published electronically: July 31, 2001
- Additional Notes: This research was supported by grants DMS 9714758, 9623276, 9970577, and 9622997 of the US National Science Foundation, and grant 217006-99 RGPIN of the Natural Sciences and Engineering Research Council of Canada. The hospitality of the Max-Planck Institutes at Bonn and Leipzig are gratefully acknowledged by the second and third authors respectively.
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**15**(2002), 1-26 - MSC (2000): Primary 49Q20; Secondary 26B10, 28A50, 58E17, 90B06
- DOI: https://doi.org/10.1090/S0894-0347-01-00376-9
- MathSciNet review: 1862796