Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Compactifying the space of stable maps
HTML articles powered by AMS MathViewer

by Dan Abramovich and Angelo Vistoli
J. Amer. Math. Soc. 15 (2002), 27-75
Published electronically: July 31, 2001


In this paper we study a notion of twisted stable map, from a curve to a tame Deligne-Mumford stack, which generalizes the well-known notion of stable map to a projective variety.
    [$\aleph$-C-V]A-C-V D. Abramovich, A. Corti and A. Vistoli, Twisted bundles and admissible covers, preprint, 2001, arXiv:math.AG/0106211. [$\aleph$-G-V]A-G-V D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quantum products, in preparation. [$\aleph$-J]A-Jarvis D. Abramovich and T. Jarvis, Moduli of twisted spin curves, preprint, arXiv:math.AG/0104154.
  • Dan Abramovich and Frans Oort, Alterations and resolution of singularities, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 39–108. MR 1748617, DOI 10.1007/978-3-0348-8399-3_{3}
  • [$\aleph$-V1]A-V:stable-maps D. Abramovich and A. Vistoli, Complete moduli for families over semistable curves, preprint, arXiv:math.AG/9811059. [$\aleph$-V2]A-V:fibered-surfaces D. Abramovich and A. Vistoli, Complete moduli for fibered surfaces. In Recent Progress in Intersection Theory, G. Ellingsrud, W. Fulton, A. Vistoli (eds.), Birkhäuser, 2000.
  • M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189. MR 399094, DOI 10.1007/BF01390174
  • K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI 10.1215/S0012-7094-96-08501-4
  • Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
  • [C-R]Chen-Ruan W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, preprint, arXiv:math.AG/0103156.
  • P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
  • [E-H-K-V]E-H-K-V D. Edidin, B. Hassett, A. Kresch and A. Vistoli, Brauer groups and quotient stacks, American Journal of Mathematics, to appear, arXiv:math.AG/9905049.
  • Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634. MR 1614555, DOI 10.1007/s002220050214
  • [F-G]Fantechi-Gottsche B. Fantechi and L. Göttsche, Orbifold cohomology for global quotients, preprint, arXiv:math.AG/0104207.
  • W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
  • K. A. Hirsch, On skew-groups, Proc. London Math. Soc. 45 (1939), 357–368. MR 0000036, DOI 10.1112/plms/s2-45.1.357
  • Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
  • Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
  • Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
  • A. J. de Jong and F. Oort, On extending families of curves, J. Algebraic Geom. 6 (1997), no. 3, 545–562. MR 1487226
  • Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213. MR 1432041, DOI 10.2307/2951828
  • G. M. Kelly and Ross Street, Review of the elements of $2$-categories, Category Seminar (Proc. Sem., Sydney, 1972/1973) Lecture Notes in Math., Vol. 420, Springer, Berlin, 1974, pp. 75–103. MR 0357542
  • Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647, DOI 10.1007/BFb0059750
  • Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
  • Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536. MR 1719823, DOI 10.1007/s002220050351
  • [La]Lanave G. La Nave, Stable reduction for elliptic surfaces with sections, Ph.D. Thesis, Brandeis University, 2000.
  • Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927, DOI 10.1007/978-3-540-24899-6
  • Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
  • James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • Shinichi Mochizuki, Extending families of curves over log regular schemes, J. Reine Angew. Math. 511 (1999), 43–71. MR 1695789, DOI 10.1515/crll.1999.511.43
  • Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
  • [We]Wewers S. Wewers, Construction of Hurwitz spaces, Institut für Experimentelle Mathematik preprint No. 21 (1998).
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14H10, 14D20
  • Retrieve articles in all journals with MSC (2000): 14H10, 14D20
Bibliographic Information
  • Dan Abramovich
  • Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
  • MR Author ID: 309312
  • ORCID: 0000-0003-0719-0989
  • Email:
  • Angelo Vistoli
  • Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy
  • MR Author ID: 194370
  • ORCID: 0000-0003-3857-3755
  • Email:
  • Received by editor(s): May 11, 2000
  • Published electronically: July 31, 2001
  • Additional Notes: The first author’s research was partially supported by National Science Foundation grant DMS-9700520 and by an Alfred P. Sloan research fellowship
    The second author’s research was partially supported by the University of Bologna, funds for selected research topics
  • © Copyright 2001 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 15 (2002), 27-75
  • MSC (2000): Primary 14H10, 14D20
  • DOI:
  • MathSciNet review: 1862797