Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras
Author:
Maria Gorelik
Journal:
J. Amer. Math. Soc. 15 (2002), 113-165
MSC (2000):
Primary 17B10, 17B20, 17B35
DOI:
https://doi.org/10.1090/S0894-0347-01-00382-4
Published electronically:
September 19, 2001
MathSciNet review:
1862799
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.
- Marc Aubry and Jean-Michel Lemaire, Zero divisors in enveloping algebras of graded Lie algebras, J. Pure Appl. Algebra 38 (1985), no. 2-3, 159–166. MR 814174, DOI https://doi.org/10.1016/0022-4049%2885%2990006-4
- Allen D. Bell and Rolf Farnsteiner, On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. Amer. Math. Soc. 335 (1993), no. 1, 407–424. MR 1097163, DOI https://doi.org/10.1090/S0002-9947-1993-1097163-5
- Joseph Bernstein and Valery Lunts, A simple proof of Kostant’s theorem that $U(\mathfrak g)$ is free over its center, Amer. J. Math. 118 (1996), no. 5, 979–987. MR 1408495
- Michael Bershadsky, Slava Zhukov, and Arkady Vaintrob, ${\rm PSL}(n|n)$ sigma model as a conformal field theory, Nuclear Phys. B 559 (1999), no. 1-2, 205–234. MR 1725904, DOI https://doi.org/10.1016/S0550-3213%2899%2900378-8
- Michel Duflo, Construction of primitive ideals in an enveloping algebra, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 77–93. MR 0399194 [FSS]fss L. Frappat, P. Sorba, A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161. [G1]ghost M. Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier 50 (2000), no.6, 1745–1764. [G2]geq M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras, preprint (2000).
- Maria Gorelik and Emmanuel Lanzmann, The annihilation theorem for the completely reducible Lie superalgebras, Invent. Math. 137 (1999), no. 3, 651–680. MR 1709858, DOI https://doi.org/10.1007/s002220050338
- Maria Gorelik and Emmanuel Lanzmann, The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra ${\rm osp}(1,2l)$, Adv. Math. 154 (2000), no. 2, 333–366. MR 1784679, DOI https://doi.org/10.1006/aima.2000.1927
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170
- A. Joseph, Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture, Invent. Math. 56 (1980), no. 3, 191–213. MR 561970, DOI https://doi.org/10.1007/BF01390044
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966
- Anthony Joseph, Sur l’annulateur d’un module de Verma, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 237–300 (French, with English and French summaries). With an outline of the annihilation theorem by M. Gorelik and E. Lanzmann. MR 1649628
- Anthony Joseph and Gail Letzter, Verma module annihilators for quantized enveloping algebras, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 4, 493–526. MR 1334611
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI https://doi.org/10.1016/0001-8708%2877%2990017-2
- V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5 (1977), no. 8, 889–897. MR 444725, DOI https://doi.org/10.1080/00927877708822201
- V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI https://doi.org/10.2307/2373130
- Edward S. Letzter and Ian M. Musson, Complete sets of representations of classical Lie superalgebras, Lett. Math. Phys. 31 (1994), no. 3, 247–253. MR 1280861, DOI https://doi.org/10.1007/BF00761716
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- Ian M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra, J. Algebra 193 (1997), no. 1, 75–101. MR 1456569, DOI https://doi.org/10.1006/jabr.1996.7000
- Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252–268. MR 1149625, DOI https://doi.org/10.1016/0001-8708%2892%2990018-G
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI https://doi.org/10.2307/1970351
- Ivan Penkov and Vera Serganova, Representations of classical Lie superalgebras of type ${\rm I}$, Indag. Math. (N.S.) 3 (1992), no. 4, 419–466. MR 1201236, DOI https://doi.org/10.1016/0019-3577%2892%2990020-L
- Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI https://doi.org/10.1142/S0129167X9400022X
- Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441
- A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C. R. Acad. Bulgare Sci. 35 (1982), no. 5, 573–576 (Russian). MR 680999
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 17B10, 17B20, 17B35
Retrieve articles in all journals with MSC (2000): 17B10, 17B20, 17B35
Additional Information
Maria Gorelik
Affiliation:
Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
Email:
gorelik@wisdom.weizmann.ac.il
Keywords:
Basic classical Lie superalgebra,
adjoint action,
Verma module
Received by editor(s):
December 6, 2000
Published electronically:
September 19, 2001
Additional Notes:
The author was partially supported by TMR Grant No. FMRX-CT97-0100. Research at MSRI was supported in part by NSF grant DMS-9701755
Article copyright:
© Copyright 2001
American Mathematical Society