Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras
HTML articles powered by AMS MathViewer
- by Maria Gorelik;
- J. Amer. Math. Soc. 15 (2002), 113-165
- DOI: https://doi.org/10.1090/S0894-0347-01-00382-4
- Published electronically: September 19, 2001
- PDF | Request permission
Abstract:
In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.References
- Marc Aubry and Jean-Michel Lemaire, Zero divisors in enveloping algebras of graded Lie algebras, J. Pure Appl. Algebra 38 (1985), no. 2-3, 159–166. MR 814174, DOI 10.1016/0022-4049(85)90006-4
- Allen D. Bell and Rolf Farnsteiner, On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. Amer. Math. Soc. 335 (1993), no. 1, 407–424. MR 1097163, DOI 10.1090/S0002-9947-1993-1097163-5
- Joseph Bernstein and Valery Lunts, A simple proof of Kostant’s theorem that $U(\mathfrak {g})$ is free over its center, Amer. J. Math. 118 (1996), no. 5, 979–987. MR 1408495, DOI 10.1353/ajm.1996.0037
- Michael Bershadsky, Slava Zhukov, and Arkady Vaintrob, $\textrm {PSL}(n|n)$ sigma model as a conformal field theory, Nuclear Phys. B 559 (1999), no. 1-2, 205–234. MR 1725904, DOI 10.1016/S0550-3213(99)00378-8
- Michel Duflo, Construction of primitive ideals in an enveloping algebra, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted Press, New York-Toronto, Ont., 1975, pp. 77–93. MR 399194 [FSS]fss L. Frappat, P. Sorba, A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161. [G1]ghost M. Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier 50 (2000), no.6, 1745–1764. [G2]geq M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras, preprint (2000).
- Maria Gorelik and Emmanuel Lanzmann, The annihilation theorem for the completely reducible Lie superalgebras, Invent. Math. 137 (1999), no. 3, 651–680. MR 1709858, DOI 10.1007/s002220050338
- Maria Gorelik and Emmanuel Lanzmann, The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra $\textrm {osp}(1,2l)$, Adv. Math. 154 (2000), no. 2, 333–366. MR 1784679, DOI 10.1006/aima.2000.1927
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- A. Joseph, Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture, Invent. Math. 56 (1980), no. 3, 191–213. MR 561970, DOI 10.1007/BF01390044
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- Anthony Joseph, Sur l’annulateur d’un module de Verma, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 237–300 (French, with English and French summaries). With an outline of the annihilation theorem by M. Gorelik and E. Lanzmann. MR 1649628
- Anthony Joseph and Gail Letzter, Verma module annihilators for quantized enveloping algebras, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 4, 493–526. MR 1334611, DOI 10.24033/asens.1723
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5 (1977), no. 8, 889–897. MR 444725, DOI 10.1080/00927877708822201
- V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- Edward S. Letzter and Ian M. Musson, Complete sets of representations of classical Lie superalgebras, Lett. Math. Phys. 31 (1994), no. 3, 247–253. MR 1280861, DOI 10.1007/BF00761716
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Springer-Verlag, Berlin-Göttingen-Heidelberg; Academic Press, Inc., Publishers, New York, 1963. MR 156879, DOI 10.1007/978-3-642-62029-4
- Ian M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra, J. Algebra 193 (1997), no. 1, 75–101. MR 1456569, DOI 10.1006/jabr.1996.7000
- Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252–268. MR 1149625, DOI 10.1016/0001-8708(92)90018-G
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351
- Ivan Penkov and Vera Serganova, Representations of classical Lie superalgebras of type $\textrm {I}$, Indag. Math. (N.S.) 3 (1992), no. 4, 419–466. MR 1201236, DOI 10.1016/0019-3577(92)90020-L
- Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI 10.1142/S0129167X9400022X
- Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441, DOI 10.1007/BFb0070929
- A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C. R. Acad. Bulgare Sci. 35 (1982), no. 5, 573–576 (Russian). MR 680999
Bibliographic Information
- Maria Gorelik
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
- Email: gorelik@wisdom.weizmann.ac.il
- Received by editor(s): December 6, 2000
- Published electronically: September 19, 2001
- Additional Notes: The author was partially supported by TMR Grant No. FMRX-CT97-0100. Research at MSRI was supported in part by NSF grant DMS-9701755
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 113-165
- MSC (2000): Primary 17B10, 17B20, 17B35
- DOI: https://doi.org/10.1090/S0894-0347-01-00382-4
- MathSciNet review: 1862799