Cluster algebras I: Foundations
HTML articles powered by AMS MathViewer
- by Sergey Fomin and Andrei Zelevinsky;
- J. Amer. Math. Soc. 15 (2002), 497-529
- DOI: https://doi.org/10.1090/S0894-0347-01-00385-X
- Published electronically: December 28, 2001
- HTML | PDF
Abstract:
In an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups, we initiate the study of a new class of commutative algebras.References
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149. MR 1405449, DOI 10.1006/aima.1996.0057
- Arkady Berenstein and Andrei Zelevinsky, String bases for quantum groups of type $A_r$, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51–89. MR 1237826
- Arkady Berenstein and Andrei Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166. MR 1456321, DOI 10.1007/PL00000363 bz01 A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), 77–128.
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- Sergey Fomin and Andrei Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), no. 1, 23–33. MR 1745560, DOI 10.1007/BF03024444
- Sergey Fomin and Andrei Zelevinsky, Totally nonnegative and oscillatory elements in semisimple groups, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3749–3759. MR 1694341, DOI 10.1090/S0002-9939-00-05487-3 fz-Laurent S. Fomin and A. Zelevinsky, The Laurent phenomenon, to appear in Adv. in Applied Math.
- I. M. Gel′fand and A. Zelevinsky, Canonical basis in irreducible representations of $\textrm {gl}_3$ and its applications, Group theoretical methods in physics, Vol. II (Yurmala, 1985) VNU Sci. Press, Utrecht, 1986, pp. 127–146. MR 919787
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Joseph P. S. Kung and Gian-Carlo Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 27–85. MR 722856, DOI 10.1090/S0273-0979-1984-15188-7
- Bernard Leclerc and Andrei Zelevinsky, Quasicommuting families of quantum Plücker coordinates, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85–108. MR 1618743, DOI 10.1090/trans2/181/03
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- A. V. Zelevinskiĭ and V. S. Retakh, The fundamental affine space and canonical basis in irreducible representations of the group $\textrm {Sp}_4$, Dokl. Akad. Nauk SSSR 300 (1988), no. 1, 31–35 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 3, 618–622. MR 948800
- Boris Shapiro, Michael Shapiro, Alek Vainshtein, and Andrei Zelevinsky, Simply laced Coxeter groups and groups generated by symplectic transvections, Michigan Math. J. 48 (2000), 531–551. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786504, DOI 10.1307/mmj/1030132732
- Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980, DOI 10.1007/978-3-7091-4368-1
- Al. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless $ADE$ scattering theories, Phys. Lett. B 253 (1991), no. 3-4, 391–394. MR 1092210, DOI 10.1016/0370-2693(91)91737-G
- Andrei Zelevinsky, Connected components of real double Bruhat cells, Internat. Math. Res. Notices 21 (2000), 1131–1154. MR 1800992, DOI 10.1155/S1073792800000568
Bibliographic Information
- Sergey Fomin
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 230455
- ORCID: 0000-0002-4714-6141
- Email: fomin@umich.edu
- Andrei Zelevinsky
- Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
- Email: andrei@neu.edu
- Received by editor(s): April 13, 2001
- Received by editor(s) in revised form: October 26, 2001
- Published electronically: December 28, 2001
- Additional Notes: The authors were supported in part by NSF grants #DMS-0049063, #DMS-0070685 (S.F.), and #DMS-9971362 (A.Z.)
- © Copyright 2001 by Sergey Fomin and Andrei Zelevinsky
- Journal: J. Amer. Math. Soc. 15 (2002), 497-529
- MSC (1991): Primary 14M99; Secondary 17B99
- DOI: https://doi.org/10.1090/S0894-0347-01-00385-X
- MathSciNet review: 1887642
Dedicated: To the memory of Sergei Kerov