Construction of discrete series for classical $p$-adic groups
HTML articles powered by AMS MathViewer
- by Colette Mœglin and Marko Tadić;
- J. Amer. Math. Soc. 15 (2002), 715-786
- DOI: https://doi.org/10.1090/S0894-0347-02-00389-2
- Published electronically: April 5, 2002
- PDF | Request permission
Abstract:
The classification of irreducible square integrable representations of classical $p$-adic groups is completed in this paper, under a natural local assumption. Further, this classification gives a parameterization of irreducible tempered representations of these groups. Therefore, it implies a classification of the non-unitary duals of these groups (modulo cuspidal data). The classification of irreducible square integrable representations is directly related to the parameterization of irreducible square integrable representations in terms of dual objects, which is predicted by Langlands program.References
- J. Adams, $L$-functoriality for dual pairs, Astérisque 171-172 (1989), 85–129. Orbites unipotentes et représentations, II. MR 1021501
- James Arthur, Unipotent automorphic representations: global motivation, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 1–75. MR 1044818
- Dubravka Ban, Parabolic induction and Jacquet modules of representations of $\textrm {O}(2n,F)$, Glas. Mat. Ser. III 34(54) (1999), no. 2, 147–185. MR 1739616
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- David Goldberg, Reducibility of induced representations for $\textrm {Sp}(2n)$ and $\textrm {SO}(n)$, Amer. J. Math. 116 (1994), no. 5, 1101–1151. MR 1296726, DOI 10.2307/2374942
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Chris Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), no. 6, 1213–1262. MR 1481814, DOI 10.1353/ajm.1997.0039
- Chris Jantzen, On square-integrable representations of classical $p$-adic groups. II, Represent. Theory 4 (2000), 127–180. MR 1789464, DOI 10.1090/S1088-4165-00-00081-9
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no. 1, 1–80. MR 1289491, DOI 10.2307/2118540
- C. Mœglin, Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales; le cas des groupes classiques $p$-adiques, Ann. of Math. (2) 151 (2000), no. 2, 817–847 (French). MR 1765711, DOI 10.2307/121049 [M2]M2 —, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, in Journal of the European Mathematical Society (to appear).
- C. Mœglin, Représentations quadratiques unipotentes des groupes classiques $p$-adiques, Duke Math. J. 84 (1996), no. 2, 267–332 (French). MR 1404331, DOI 10.1215/S0012-7094-96-08410-0
- Colette Mœglin, Non nullité de certains relêvements par séries théta, J. Lie Theory 7 (1997), no. 2, 201–229 (French, with English summary). MR 1473165 [M5]M5 —, Points de réductibilité pour les induites de cuspidales, Prépublication, Institut de mathématiques de Jussieu (2001).
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752, DOI 10.24033/asens.1595
- Goran Muić, On generic irreducible representations of $\textrm {Sp}(n,F)$ and $\textrm {SO}(2n+1,F)$, Glas. Mat. Ser. III 33(53) (1998), no. 1, 19–31. MR 1652772
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, Local coefficients and normalization of intertwining operators for $\textrm {GL}(n)$, Compositio Math. 48 (1983), no. 3, 271–295. MR 700741
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571–587. MR 577138, DOI 10.2307/1971110
- Marko Tadić, On regular square integrable representations of $p$-adic groups, Amer. J. Math. 120 (1998), no. 1, 159–210. MR 1600280, DOI 10.1353/ajm.1998.0007
- Marko Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91. MR 1658535, DOI 10.1007/BF02764004
- Marko Tadić, Square integrable representations of classical $p$-adic groups corresponding to segments, Represent. Theory 3 (1999), 58–89. MR 1698200, DOI 10.1090/S1088-4165-99-00071-0 [T4]T4 —, A family of square integrable representations of classical $p$-adic groups, preprint (1998).
- Marko Tadić, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra 177 (1995), no. 1, 1–33. MR 1356358, DOI 10.1006/jabr.1995.1284
- Marko Tadić, Representations of $p$-adic symplectic groups, Compositio Math. 90 (1994), no. 2, 123–181. MR 1266251
- David A. Vogan Jr., The local Langlands conjecture, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379. MR 1216197, DOI 10.1090/conm/145/1216197 [W1]W1 Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques, d’après Harish-Chandra, Journal de l’Institut de Mathématiques de Jussieu (to appear).
- J.-L. Waldspurger, Un exercice sur $\textrm {GSp}(4,F)$ et les représentations de Weil, Bull. Soc. Math. France 115 (1987), no. 1, 35–69 (French). MR 897614, DOI 10.24033/bsmf.2068
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Colette Mœglin
- Affiliation: Institut de Mathématiques de Jussieu, CNRS, F-75251 Paris Cedex 05, France
- Email: moeglin@math.jussieu.fr
- Marko Tadić
- Affiliation: Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
- ORCID: 0000-0002-6087-3765
- Email: tadic@math.hr
- Received by editor(s): December 1, 2000
- Received by editor(s) in revised form: January 2, 2002
- Published electronically: April 5, 2002
- Additional Notes: The second author was partly supported by Croatian Ministry of Science and Technology grant # 37001.
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 715-786
- MSC (1991): Primary 22E50, 22E35; Secondary 11F70, 11S37
- DOI: https://doi.org/10.1090/S0894-0347-02-00389-2
- MathSciNet review: 1896238