Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Supersingular elliptic curves, theta series and weight two modular forms
HTML articles powered by AMS MathViewer

by Matthew Emerton PDF
J. Amer. Math. Soc. 15 (2002), 671-714 Request permission

Abstract:

Let $p$ be a prime, and let $\mathcal {M}$ denote the space of weight two modular forms on $\Gamma _{0}(p)$ all of whose Fourier coefficients are integral, except possibly for the constant term, which should be either integral or half-integral. We prove that $\mathcal {M}$ is spanned as a $\mathbb {Z}$-module by theta series attached to the unique quaternion algebra that is ramified at $p$, at infinity, and at no other primes.
References
  • A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
  • Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51. MR 1279600, DOI 10.1090/conm/165/01602
  • Robert F. Coleman, A $p$-adic inner product on elliptic modular forms, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 125–151. MR 1307394
  • EIF Eichler, M., Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), 102–109.
  • Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
  • Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR 894322
  • Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms (mod $p$), Duke Math. J. 61 (1990), no. 2, 445–517. MR 1074305, DOI 10.1215/S0012-7094-90-06119-8
  • GRL Gross, B.H., Course at Harvard University, Spring, 1996.
  • Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656
  • Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
  • Erich Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR 638719, DOI 10.1007/978-1-4757-4092-9
  • Hiroaki Hijikata and Hiroshi Saito, On the representability of modular forms by theta series, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 13–21. MR 0357332
  • Jun-ichi Igusa, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 312–314. MR 98728, DOI 10.1073/pnas.44.4.312
  • KIL Kilford, L., Some examples of non-Gorenstein Hecke algebras associated to modular forms, preprint, available at http://www.ma.ic.ac.uk/~ljpk/maths/maths.html.
  • B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
  • Gary Cornell, Joseph H. Silverman, and Glenn Stevens (eds.), Modular forms and Fermat’s last theorem, Springer-Verlag, New York, 1997. Papers from the Instructional Conference on Number Theory and Arithmetic Geometry held at Boston University, Boston, MA, August 9–18, 1995. MR 1638473, DOI 10.1007/978-1-4612-1974-3
  • B. Mazur and K. A. Ribet, Two-dimensional representations in the arithmetic of modular curves, Astérisque 196-197 (1991), 6, 215–255 (1992) (English, with French summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141460
  • Masami Ohta, On theta series mod $p$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 679–686 (1982). MR 656043
  • Kenneth A. Ribet, Mod $p$ Hecke operators and congruences between modular forms, Invent. Math. 71 (1983), no. 1, 193–205. MR 688264, DOI 10.1007/BF01393341
  • K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
  • Kenneth A. Ribet, Multiplicities of Galois representations in Jacobians of Shimura curves, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 221–236. MR 1159117
  • Kenneth A. Ribet, Multiplicities of $p$-finite mod $p$ Galois representations in $J_0(Np)$, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), no. 2, 177–188. MR 1139564, DOI 10.1007/BF01237363
  • Kenneth A. Ribet, Torsion points on $J_0(N)$ and Galois representations, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 145–166. MR 1754687, DOI 10.1007/BFb0093454
  • Jean-Pierre Serre, Sur les représentations modulaires de degré $2$ de $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$, Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, DOI 10.1215/S0012-7094-87-05413-5
  • STE Stevens, G., Coleman’s $\mathcal {L}$-invariant and families of modular forms, preprint (1996).
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11F11, 11F27, 11F37
  • Retrieve articles in all journals with MSC (2000): 11F11, 11F27, 11F37
Additional Information
  • Matthew Emerton
  • Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Rd., Evanston, Illinois 60208-2730
  • Email: emerton@math.northwestern.edu
  • Received by editor(s): November 1, 2000
  • Received by editor(s) in revised form: September 19, 2001
  • Published electronically: February 27, 2002
  • © Copyright 2002 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 15 (2002), 671-714
  • MSC (2000): Primary 11F11, 11F27, 11F37
  • DOI: https://doi.org/10.1090/S0894-0347-02-00390-9
  • MathSciNet review: 1896237