Singularities of pairs via jet schemes
HTML articles powered by AMS MathViewer
- by Mircea Mustaţǎ;
- J. Amer. Math. Soc. 15 (2002), 599-615
- DOI: https://doi.org/10.1090/S0894-0347-02-00391-0
- Published electronically: February 14, 2002
- PDF | Request permission
Abstract:
Let $X$ be a smooth variety and $Y\subset X$ a closed subscheme. We use motivic integration on the space of arcs of $X$ to characterize the fact that $(X,Y)$ is log canonical or log terminal using the dimension of the jet schemes of $Y$. This gives a formula for the log canonical threshold of $(X,Y)$, which we use to prove a result of Demailly and Kollár on the semicontinuity of log canonical thresholds.References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser Boston, Inc., Boston, MA, 1985. The classification of critical points, caustics and wave fronts; Translated from the Russian by Ian Porteous and Mark Reynolds. MR 777682, DOI 10.1007/978-1-4612-5154-5
- Victor V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1–32. MR 1672108 [Cr]craw A. Craw, An introduction to motivic integration, preprint 1999, arXiv: math.AG/9911179. [DK]demailly J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Ka̋hler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), 525–556.
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Lawrence Ein, Multiplier ideals, vanishing theorems and applications, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 203–219. MR 1492524, DOI 10.1090/pspum/062.1/1492524
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 199184, DOI 10.2307/1970547
- J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2665–2671. MR 1828466, DOI 10.1090/S0002-9947-01-02720-9
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525, DOI 10.1090/pspum/062.1/1492525 [Kon]kontsevich M. Kontsevich, Lecture at Orsay (December 7, 1995). [La]lazarsfeld R. Lazarsfeld, Multiplier ideals for algebraic geometers, lecture notes available at http://www.math.lsa.umich.edu/ ̃rlaz, version of August 2000. [Mu]mustata M. Mustaţǎ, Jet schemes of locally complete intersection canonical singularities, with an appendix by David Eisenbud and Edward Frenkel, Invent. Math. 145 (2001), 397–424.
Bibliographic Information
- Mircea Mustaţǎ
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720 – and – Institute of Mathematics of the Romanian Academy
- Address at time of publication: Clay Mathematics Institute, 1770 Massachusetts Avenue, No. 331, Cambridge, Massachusetts 02140
- Email: mirceamustata@yahoo.com
- Received by editor(s): March 2, 2001
- Published electronically: February 14, 2002
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 599-615
- MSC (2000): Primary 14B05; Secondary 14B10, 14E30
- DOI: https://doi.org/10.1090/S0894-0347-02-00391-0
- MathSciNet review: 1896234