Derived Hilbert schemes
HTML articles powered by AMS MathViewer
- by Ionuţ Ciocan-Fontanine and Mikhail M. Kapranov;
- J. Amer. Math. Soc. 15 (2002), 787-815
- DOI: https://doi.org/10.1090/S0894-0347-02-00399-5
- Published electronically: June 21, 2002
- PDF | Request permission
Abstract:
We construct the derived version of the Hilbert scheme parametrizing subschemes in a given projective scheme $X$ with given Hilbert polynomial $h$. This is a dg-manifold (smooth dg-scheme) $RHilb_h(X)$ which carries a natural family of commutative (up to homotopy) dg-algebras, which over the usual Hilbert scheme is given by truncations of the homogeneous coordinate rings of subschemes in $X$. In particular, $RHilb_h(X)$ differs from $RQuot_n({\mathcal O_X})$, the derived Quot scheme constructed in our previous paper, which carries only a family of $A_\infty$-modules over the coordinate algebra of $X$. As an application, we construct the derived version of the moduli stack of stable maps of algebraic curves to a given projective variety $Y$, thus realizing the original suggestion of M. Kontsevich.References
- K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601–617. MR 1431140, DOI 10.1007/s002220050132
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Sergey Barannikov and Maxim Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 4 (1998), 201–215. MR 1609624, DOI 10.1155/S1073792898000166
- K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI 10.1215/S0012-7094-96-08501-4 [CK]CK I. Ciocan-Fontanine and M. Kapranov, Derived Quot schemes, Ann. Sci. ENS (4) 34 (2001), 403-440.
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534 [GJ]GJ E. Getzler and J.D.S. Jones, Operads, homotopy algebras and iterated integrals for double loop spaces, preprint, 1994.
- Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. MR 1301191, DOI 10.1215/S0012-7094-94-07608-4
- Séminaire Bourbaki, 13ième année: 1960/61. Textes des conférences. Exposés 205 à 222, Secrétariat mathématique, Paris, 1961 (French). Deuxième édition, corrigée. 3 fascicules. MR 151353
- Vladimir Hinich, DG coalgebras as formal stacks, J. Pure Appl. Algebra 162 (2001), no. 2-3, 209–250. MR 1843805, DOI 10.1016/S0022-4049(00)00121-3 [Hi2]Hi2 V. Hinich, Deformations of homotopy algebras, preprint math.AG/9904145.
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 491680, DOI 10.1007/BFb0059052
- M. Kapranov, Injective resolutions of $BG$ and derived moduli spaces of local systems, J. Pure Appl. Algebra 155 (2001), no. 2-3, 167–179. MR 1801413, DOI 10.1016/S0022-4049(99)00109-7
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2 [KS]KS M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and Deligne’s conjecture, preprint math.QA/0001151.
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927, DOI 10.1007/978-3-540-24899-6
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9 [Man]Man M. Manetti, Extended deformation functors, I, Int. Math. Res. Not. 2002, no. 14, 719-756.
- Martin Markl, Models for operads, Comm. Algebra 24 (1996), no. 4, 1471–1500. MR 1380606, DOI 10.1080/00927879608825647
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 420609, DOI 10.1007/BFb0068547
- Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Proc. Sympos. Pure Math., XVII, Amer. Math. Soc., Providence, RI, 1970, pp. 65–87. MR 257068 [Re]Re C. Rezk, Spaces of algebra structures and cohomology of operads, thesis, MIT (1996).
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Jim Stasheff, Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 120–137. MR 1183483, DOI 10.1007/BFb0101184
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632, DOI 10.1007/978-3-642-79745-3
Bibliographic Information
- Ionuţ Ciocan-Fontanine
- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 365502
- Email: ciocan@math.umn.edu
- Mikhail M. Kapranov
- Affiliation: Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3
- MR Author ID: 200368
- Email: kapranov@math.toronto.edu
- Received by editor(s): August 14, 2000
- Published electronically: June 21, 2002
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 15 (2002), 787-815
- MSC (2000): Primary 14M30; Secondary 18G50
- DOI: https://doi.org/10.1090/S0894-0347-02-00399-5
- MathSciNet review: 1915819