Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak {gl}(m|n)$
HTML articles powered by AMS MathViewer
- by Jonathan Brundan;
- J. Amer. Math. Soc. 16 (2003), 185-231
- DOI: https://doi.org/10.1090/S0894-0347-02-00408-3
- Published electronically: October 16, 2002
- PDF | Request permission
Abstract:
We compute the characters of the finite dimensional irreducible representations of the Lie superalgebra $\mathfrak {gl}(m|n)$, and determine ${\operatorname {Ext}}$’s between simple modules in the category of finite dimensional representations. We formulate conjectures for the analogous results in category $\mathcal O$. The combinatorics parallels the combinatorics of certain canonical bases over the Lie algebra $\mathfrak {gl}(\infty )$.References
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 88, DOI 10.1007/BF03046993
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak {g}}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 407097
- I. N. Bernšteĭn and D. A. Leĭtes, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series $\textrm {Gl}$ and $\textrm {sl}$, C. R. Acad. Bulgare Sci. 33 (1980), no. 8, 1049–1051 (Russian). MR 620836
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760
- Jonathan Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type $A$, Proc. London Math. Soc. (3) 77 (1998), no. 3, 551–581. MR 1643413, DOI 10.1112/S0024611598000562 [B2]Btilt J. Brundan, Tilting modules for Lie superalgebras, preprint, University of Oregon, 2002, available from http://darkwing.uoregon.edu/~brundan/research.html.
- Jonathan Brundan and Alexander Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2l}^{(2)}$ and modular branching rules for $\hat S_n$, Represent. Theory 5 (2001), 317–403. MR 1870595, DOI 10.1090/S1088-4165-01-00123-6 [BKu]BKu J. Brundan and J. Kujawa, A new proof of the Mullineux conjecture, preprint, University of Oregon, 2002.
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165
- Edward T. Cline, Brian J. Parshall, and Leonard L. Scott, Duality in highest weight categories, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 7–22. MR 982273, DOI 10.1090/conm/082/982273
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- Edward Cline, Brian Parshall, and Leonard Scott, Infinitesimal Kazhdan-Lusztig theories, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 43–73. MR 1197829, DOI 10.1090/conm/139/1197829
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- Jie Du, $\textrm {IC}$ bases and quantum linear groups, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 135–148. MR 1278732, DOI 10.1090/pspum/056.2/1278732
- Jie Du, A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq. 2 (1995), no. 4, 363–372. MR 1358684
- I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov Jr., Kazhdan-Lusztig polynomials and canonical basis, Transform. Groups 3 (1998), no. 4, 321–336. MR 1657524, DOI 10.1007/BF01234531
- J. W. B. Hughes, R. C. King, and J. Van der Jeugt, On the composition factors of Kac modules for the Lie superalgebras $\textrm {sl}(m/n)$, J. Math. Phys. 33 (1992), no. 2, 470–491. MR 1145343, DOI 10.1063/1.529782
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- J. Van der Jeugt, J. W. B. Hughes, R. C. King, and J. Thierry-Mieg, Character formulas for irreducible modules of the Lie superalgebras $\textrm {sl}(m/n)$, J. Math. Phys. 31 (1990), no. 9, 2278–2304. MR 1067852, DOI 10.1063/1.528637
- J. Van der Jeugt, J. W. B. Hughes, R. C. King, and J. Thierry-Mieg, A character formula for singly atypical modules of the Lie superalgebra $\textrm {sl}(m/n)$, Comm. Algebra 18 (1990), no. 10, 3453–3480. MR 1063989, DOI 10.1080/00927879008824086
- J. Van der Jeugt and R. B. Zhang, Characters and composition factor multiplicities for the Lie superalgebra $\mathfrak {g}\mathfrak {l}(m/n)$, Lett. Math. Phys. 47 (1999), no. 1, 49–61. MR 1669394, DOI 10.1023/A:1007590920834
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5 (1977), no. 8, 889–897. MR 444725, DOI 10.1080/00927877708822201
- V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- Victor G. Kac and Minoru Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456. MR 1327543, DOI 10.1007/978-1-4612-0261-5_{1}5
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI 10.1215/S0012-7094-93-06920-7
- Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR 1357199
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939 [Ku]kthesis J. Kujawa, The representation theory of the supergroup $GL(m|n)$, PhD thesis, University of Oregon, 2003.
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205–263. MR 1410572, DOI 10.1007/BF02101678
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Yuri I. Manin, Gauge field theory and complex geometry, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1997. Translated from the 1984 Russian original by N. Koblitz and J. R. King; With an appendix by Sergei Merkulov. MR 1632008, DOI 10.1007/978-3-662-07386-5
- Ivan Penkov and Vera Serganova, Representations of classical Lie superalgebras of type $\textrm {I}$, Indag. Math. (N.S.) 3 (1992), no. 4, 419–466. MR 1201236, DOI 10.1016/0019-3577(92)90020-L
- Ivan Penkov and Vera Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math. 5 (1994), no. 3, 389–419. MR 1274125, DOI 10.1142/S0129167X9400022X [S1]sergthesis V. Serganova, Automorphisms of complex simple Lie superalgebras and affine Kac-Moody algebras, PhD thesis, Leningrad State University, 1988.
- Vera Serganova, Kazhdan-Lusztig polynomials for Lie superalgebra ${\mathfrak {g}}{\mathfrak {l}}(m|n)$, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 151–165. MR 1237837
- Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra ${\mathfrak {g}}{\mathfrak {l}}(m|n)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607–651. MR 1443186, DOI 10.1007/PL00001385
- A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $\textrm {Gl}(n,\,m)$ and $Q(n)$, Mat. Sb. (N.S.) 123(165) (1984), no. 3, 422–430 (Russian). MR 735715 [Sg2]sergeev A. Sergeev, Enveloping algebra centre for Lie superalgebras $GL$ and $Q$, PhD thesis, Moscow State University, 1987.
- Alexander Sergeev, The invariant polynomials on simple Lie superalgebras, Represent. Theory 3 (1999), 250–280. MR 1714627, DOI 10.1090/S1088-4165-99-00077-1
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6
- Wolfgang Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432–448. MR 1663141, DOI 10.1090/S1088-4165-98-00057-0
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), no. 4, 805–859. MR 552528
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Yi Ming Zou, Categories of finite-dimensional weight modules over type I classical Lie superalgebras, J. Algebra 180 (1996), no. 2, 459–482. MR 1378540, DOI 10.1006/jabr.1996.0077
Bibliographic Information
- Jonathan Brundan
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: brundan@darkwing.uoregon.edu
- Received by editor(s): March 12, 2002
- Received by editor(s) in revised form: September 25, 2002
- Published electronically: October 16, 2002
- Additional Notes: Research partially supported by the NSF (grant no. DMS-0139019)
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 185-231
- MSC (2000): Primary 17B10
- DOI: https://doi.org/10.1090/S0894-0347-02-00408-3
- MathSciNet review: 1937204