The classification problem for torsion-free abelian groups of finite rank
HTML articles powered by AMS MathViewer
- by Simon Thomas;
- J. Amer. Math. Soc. 16 (2003), 233-258
- DOI: https://doi.org/10.1090/S0894-0347-02-00409-5
- Published electronically: October 8, 2002
- PDF | Request permission
Abstract:
We prove that for each $n \geq 1$, the classification problem for torsion-free abelian groups of rank $n+1$ is not Borel reducible to that for torsion-free abelian groups of rank $n$.References
- Scott Adams, Trees and amenable equivalence relations, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 1–14. MR 1053796, DOI 10.1017/S0143385700005368 a2 S. Adams, Containment does not imply Borel reducibility, in: S. Thomas (Ed.), Set Theory: The Hajnal Conference, DIMACS Series vol. 58, American Mathematical Society, 2002, pp. 1–23.
- Scot Adams and Alexander S. Kechris, Linear algebraic groups and countable Borel equivalence relations, J. Amer. Math. Soc. 13 (2000), no. 4, 909–943. MR 1775739, DOI 10.1090/S0894-0347-00-00341-6
- David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR 665251, DOI 10.1007/BFb0094245 b R. Baer, Abelian groups without elements of finite order, Duke Math. Journal 3 (1937), 68–122.
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 13 (1963), 687–710. MR 153743, DOI 10.1112/plms/s3-13.1.687
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 144979
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI 10.2307/2274750
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 255673
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- Greg Hjorth, Around nonclassifiability for countable torsion free abelian groups, Abelian groups and modules (Dublin, 1998) Trends Math., Birkhäuser, Basel, 1999, pp. 269–292. MR 1735575
- Greg Hjorth and Alexander S. Kechris, Borel equivalence relations and classifications of countable models, Ann. Pure Appl. Logic 82 (1996), no. 3, 221–272. MR 1423420, DOI 10.1016/S0168-0072(96)00006-1 jkl S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Logic 2 (2002), 1–80.
- Bjarni Jónsson, On direct decomposition of torsion free Abelian groups, Math. Scand. 7 (1959), 361–371. MR 122872, DOI 10.7146/math.scand.a-10582
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI 10.1017/S0143385700006751
- Alexander S. Kechris, Amenable versus hyperfinite Borel equivalence relations, J. Symbolic Logic 58 (1993), no. 3, 894–907. MR 1242044, DOI 10.2307/2275102
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alexander S. Kechris, On the classification problem for rank 2 torsion-free abelian groups, J. London Math. Soc. (2) 62 (2000), no. 2, 437–450. MR 1783636, DOI 10.1112/S0024610700001411
- M. Król, The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two, Dissertationes Math. (Rozprawy Mat.) 55 (1967), 76. MR 218450 ku A. G. Kurosh, Primitive torsionsfreie abelsche Gruppen vom endlichen Range, Ann. Math. 38 (1937), 175–203.
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293 ma A. I. Malcev, Torsion-free abelian groups of finite rank (Russian), Mat. Sbor. 4 (1938), 45–68.
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. Graduate Texts in Mathematics, 88. MR 674652, DOI 10.1007/978-1-4757-0163-0
- S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545, DOI 10.1007/978-3-642-85473-6 t S. Thomas, On the complexity of the classification problem for torsion-free abelian groups of rank two, to appear in Acta Math. t2 S. Thomas, The classification problem for $p$-local torsion-free abelian groups of finite rank, preprint (2002).
- M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 2002
- Simon Thomas and Boban Velickovic, On the complexity of the isomorphism relation for fields of finite transcendence degree, J. Pure Appl. Algebra 159 (2001), no. 2-3, 347–363. MR 1828944, DOI 10.1016/S0022-4049(00)00050-5
- Stan Wagon, The Banach-Tarski paradox, Encyclopedia of Mathematics and its Applications, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan Mycielski. MR 803509, DOI 10.1017/CBO9780511609596
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Groups generating transversals to semisimple Lie group actions, Israel J. Math. 73 (1991), no. 2, 151–159. MR 1135209, DOI 10.1007/BF02772946
Bibliographic Information
- Simon Thomas
- Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
- MR Author ID: 195740
- Email: sthomas@math.rutgers.edu
- Received by editor(s): March 1, 2001
- Received by editor(s) in revised form: September 25, 2002
- Published electronically: October 8, 2002
- Additional Notes: Research partially supported by NSF Grants.
- © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 233-258
- MSC (2000): Primary 03E15, 20K15, 37A20
- DOI: https://doi.org/10.1090/S0894-0347-02-00409-5
- MathSciNet review: 1937205