Functoriality for the exterior square of $\operatorname {GL}_{4}$ and the symmetric fourth of $\operatorname {GL}_{2}$
HTML articles powered by AMS MathViewer
- by Henry H. Kim; with an appendix by Dinakar Ramakrishnan; with an appendix co-authored by Peter Sarnak
- J. Amer. Math. Soc. 16 (2003), 139-183
- DOI: https://doi.org/10.1090/S0894-0347-02-00410-1
- Published electronically: October 30, 2002
- HTML | PDF | Request permission
Abstract:
In this paper we prove the functoriality of the exterior square of cusp forms on $GL_{4}$ as automorphic forms on $GL_{6}$ and the symmetric fourth of cusp forms on $GL_{2}$ as automorphic forms on $GL_{5}$. We prove these by applying a converse theorem of Cogdell and Piatetski-Shapiro to analytic properties of certain $L$-functions obtained by the Langlands-Shahidi method. We give several applications: First, we prove the weak Ramanujan property of cuspidal representations of $GL_{4}$ and the absolute convergence of the exterior square $L$-functions of $GL_{4}$. Second, we prove that the fourth symmetric power $L$-functions of cuspidal representations of $GL_{2}$ are entire, except for those of dihedral and tetrahedral type. Third, we prove the bound $\frac {3}{26}$ for Hecke eigenvalues of Maass forms over any number field.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Don Blasius and Dinakar Ramakrishnan, Maass forms and Galois representations, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 33–77. MR 1012167, DOI 10.1007/978-1-4613-9649-9_{2}
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 205–246. MR 546619
- Dinakar Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$, Ann. of Math. (2) 152 (2000), no. 1, 45–111. MR 1792292, DOI 10.2307/2661379
- Daniel Bump, W. Duke, Jeffrey Hoffstein, and Henryk Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Internat. Math. Res. Notices 4 (1992), 75–81. MR 1159448, DOI 10.1155/S1073792892000084
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219–288. MR 684172, DOI 10.1007/BF01390728
- H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. MR 618323, DOI 10.2307/2374103
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions: application to exterior square $L$-functions, Canad. J. Math. 51 (1999), no. 4, 835–849. MR 1701344, DOI 10.4153/CJM-1999-036-0
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions. II, Israel J. Math. 117 (2000), 261–284. MR 1760595, DOI 10.1007/BF02773573 [Ki3]Ki32 —, Functoriality for the exterior square of $GL_{4}$ and symmetric fourth of $GL_{2}$, the main paper. [Ki-Sh]Ki-Sh1 H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177–197.
- W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. MR 1334872, DOI 10.1007/BF01895672
- Wenzhi Luo, Zeév Rudnick, and Peter Sarnak, On the generalized Ramanujan conjecture for $\textrm {GL}(n)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 301–310. MR 1703764, DOI 10.1090/pspum/066.2/1703764
- Zeév Rudnick and Peter Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269–322. A celebration of John F. Nash, Jr. MR 1395406, DOI 10.1215/S0012-7094-96-08115-6
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, RI, 1965, pp. 1–15. MR 182610
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 223335 [As]As M. Asgari, Local $L$-functions for split spinor groups, Can. J. Math. 54 (2002), 673–693.
- Joe P. Buhler, Icosahedral Galois representations, Lecture Notes in Mathematics, Vol. 654, Springer-Verlag, Berlin-New York, 1978. MR 506171, DOI 10.1007/BFb0070418 [Ch]Ch J.-P. Jeff Chen, Local factors, Central characters, and Representations of general linear groups over non–archimedean fields, Doctoral dissertation, Yale University (1996).
- J. W. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for $\textrm {GL}_n$. II, J. Reine Angew. Math. 507 (1999), 165–188. MR 1670207, DOI 10.1515/crll.1999.507.165 [Co-PS2]Co-PS2 —, Converse theorems for $GL_{n}$ and their application to liftings, preprint.
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $\textrm {GL}_N$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5–30. MR 1863734, DOI 10.1007/s10240-001-8187-z
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355 [Ge-Sh]Ge-Sh S. Gelbart and F. Shahidi, Boundedness of automorphic ${L}$-functions in vertical strips, J. of AMS 14 (2001), 79–107.
- P. Gérardin and J.-P. Labesse, The solution of a base change problem for $\textrm {GL}(2)$ (following Langlands, Saito, Shintani), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 115–133. MR 546613
- Michael Harris, The local Langlands conjecture for $\textrm {GL}(n)$ over a $p$-adic field, $n<p$, Invent. Math. 134 (1998), no. 1, 177–210. MR 1646587, DOI 10.1007/s002220050262 [H-T]H-T M. Harris and R. Taylor, On the geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, 151, Princeton University Press, 2001.
- Guy Henniart, Une conséquence de la théorie du changement de base pour $\textrm {GL}(n)$, Analytic number theory (Tokyo, 1988) Lecture Notes in Math., vol. 1434, Springer, Berlin, 1990, pp. 138–142 (French). MR 1071750, DOI 10.1007/BFb0097130
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Guy Henniart, On the local Langlands conjecture for $\textrm {GL}(n)$: the cyclic case, Ann. of Math. (2) 123 (1986), no. 1, 145–203. MR 825841, DOI 10.2307/1971354
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on $\textrm {GL}(3)$. I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. MR 519356, DOI 10.2307/1971270
- Hervé Jacquet and Joseph Shalika, Exterior square $L$-functions, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 143–226. MR 1044830
- Hervé Jacquet and Joseph Shalika, A lemma on highly ramified $\epsilon$-factors, Math. Ann. 271 (1985), no. 3, 319–332. MR 787183, DOI 10.1007/BF01456070
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions: application to exterior square $L$-functions, Canad. J. Math. 51 (1999), no. 4, 835–849. MR 1701344, DOI 10.4153/CJM-1999-036-0
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions. II, Israel J. Math. 117 (2000), 261–284. MR 1760595, DOI 10.1007/BF02773573
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions. II, Israel J. Math. 117 (2000), 261–284. MR 1760595, DOI 10.1007/BF02773573 [Ki4]Ki4 —, On local $L$-functions and normalized intertwining operators, preprint. [Ki5]Ki5 —, Examples of non-normal quintic automorphic induction, preprint. [Ki-Sa]Ki-Sa H. Kim and P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, Appendix 2 to this paper.
- Henry H. Kim and Freydoon Shahidi, Holomorphy of Rankin triple $L$-functions; special values and root numbers for symmetric cube $L$-functions. part B, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. 449–466. MR 1809630, DOI 10.1007/BF02834847 [Ki-Sh2]Ki-Sh2 —, Functorial products for $GL_{2}\times GL_{3}$ and functorial symmetric cube for $GL_{2}$, to appear in Ann. of Math.. [Ki-Sh3]Ki-Sh3 —, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177–197.
- Stephen S. Kudla, The local Langlands correspondence: the non-Archimedean case, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 365–391. MR 1265559, DOI 10.1090/pspum/055.2/1265559
- J.-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\textrm {SL}(2)$, Canadian J. Math. 31 (1979), no. 4, 726–785. MR 540902, DOI 10.4153/CJM-1979-070-3
- Robert P. Langlands, Euler products, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. MR 419366
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 579181, DOI 10.1007/BFb0079929
- Robert P. Langlands, Base change for $\textrm {GL}(2)$, Annals of Mathematics Studies, No. 96, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1980. MR 574808
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- Wenzhi Luo, Zeév Rudnick, and Peter Sarnak, On the generalized Ramanujan conjecture for $\textrm {GL}(n)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 301–310. MR 1703764, DOI 10.1090/pspum/066.2/1703764
- W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. MR 1334872, DOI 10.1007/BF01895672
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168, DOI 10.1017/CBO9780511470905
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752, DOI 10.24033/asens.1595
- Dipendra Prasad and Dinakar Ramakrishnan, On the global root numbers of $\textrm {GL}(n)\times \textrm {GL}(m)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 311–330. MR 1703765, DOI 10.1090/pspum/066.2/1703765
- Dinakar Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$, Ann. of Math. (2) 152 (2000), no. 1, 45–111. MR 1792292, DOI 10.2307/2661379
- Dinakar Ramakrishnan, On the coefficients of cusp forms, Math. Res. Lett. 4 (1997), no. 2-3, 295–307. MR 1453061, DOI 10.4310/MRL.1997.v4.n2.a10 [Ra3]Ra3 —, A descent criterion for isobaric representations, Appendix 1 to this paper.
- Jonathan D. Rogawski, Representations of $\textrm {GL}(n)$ and division algebras over a $p$-adic field, Duke Math. J. 50 (1983), no. 1, 161–196. MR 700135
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- Freydoon Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 279–289. MR 1159120
- Freydoon Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973–1007. MR 816396, DOI 10.1215/S0012-7094-85-05252-4
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, DOI 10.1090/S0273-0979-1981-14936-3
- Yuanli Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pacific J. Math. 180 (1997), no. 2, 385–398. MR 1487571, DOI 10.2140/pjm.1997.180.385
Bibliographic Information
- Henry H. Kim
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- MR Author ID: 324906
- Email: henrykim@math.toronto.edu
- Dinakar Ramakrishnan
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 228519
- Email: dinakar@its.caltech.edu
- Peter Sarnak
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 154725
- Email: sarnak@math.princeton.edu
- Received by editor(s): August 30, 2001
- Received by editor(s) in revised form: September 18, 2002
- Published electronically: October 30, 2002
- Additional Notes: The first author was partially supported by NSF grant DMS9988672, NSF grant DMS9729992 (at IAS), NSERC grant and by the Clay Mathematics Institute
The second and third authors were partially supported by NSF grants - © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 139-183
- MSC (2000): Primary 11F30, 11F70, 11R42
- DOI: https://doi.org/10.1090/S0894-0347-02-00410-1
- MathSciNet review: 1937203