Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles
HTML articles powered by AMS MathViewer
- by Tamás Hausel and Michael Thaddeus;
- J. Amer. Math. Soc. 16 (2003), 303-329
- DOI: https://doi.org/10.1090/S0894-0347-02-00417-4
- Published electronically: December 3, 2002
- PDF | Request permission
Abstract:
The moduli space of stable bundles of rank $2$ and degree $1$ on a Riemann surface has rational cohomology generated by the so-called universal classes. The work of Baranovsky, King-Newstead, Siebert-Tian and Zagier provided a complete set of relations between these classes, expressed in terms of a recursion in the genus. This paper accomplishes the same thing for the noncompact moduli spaces of Higgs bundles, in the sense of Hitchin and Simpson. There are many more independent relations than for stable bundles, but in a sense the answer is simpler, since the formulas are completely explicit, not recursive. The results of Kirwan on equivariant cohomology for holomorphic circle actions are of key importance.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28. MR 721448, DOI 10.1016/0040-9383(84)90021-1
- V. Yu. Baranovskiĭ, The cohomology ring of the moduli space of stable bundles with odd determinant, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 4, 204–210 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 45 (1995), no. 1, 207–213. MR 1307064, DOI 10.1070/IM1995v045n01ABEH001629
- Kevin Corlette, Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361–382. MR 965220
- S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127–131. MR 887285, DOI 10.1112/plms/s3-55.1.127 ek S.B. Ekhad, A proof of a recurrence, EKHAD, available from http://www.math.temple.edu/~zeilberg/programs.html/.
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9 gs D. Grayson and M. Stillman, Macaulay 2, available from http://www.math.uiuc.edu/Macaulay2/.
- R. C. Gunning, Lectures on vector bundles over Riemann surfaces, University of Tokyo Press, Tokyo; Princeton University Press, Princeton, NJ, 1967. MR 230326
- Tamás Hausel, Compactification of moduli of Higgs bundles, J. Reine Angew. Math. 503 (1998), 169–192. MR 1650276, DOI 10.1515/crll.1998.096
- Tamás Hausel, Vanishing of intersection numbers on the moduli space of Higgs bundles, Adv. Theor. Math. Phys. 2 (1998), no. 5, 1011–1040. MR 1688480, DOI 10.4310/ATMP.1998.v2.n5.a3 mum T. Hausel, Geometric proof of the Mumford conjecture, in preparation. ht T. Hausel and M. Thaddeus, On the generators of the cohomology ring of the moduli space of rank 2 Higgs bundles, preprint arXiv:math.AG/0003093.
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank $2$ vector bundles on a curve, Topology 37 (1998), no. 2, 407–418. MR 1489212, DOI 10.1016/S0040-9383(97)00041-4
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Frances Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc. 5 (1992), no. 4, 853–906. MR 1145826, DOI 10.1090/S0894-0347-1992-1145826-8
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 207802
- I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319–343. MR 151460, DOI 10.1016/0040-9383(62)90019-8 mark E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces, preprint arXiv:math.AG/0009109.
- Vicente Muñoz, Ring structure of the Floer cohomology of $\Sigma \times \textbf {S}^1$, Topology 38 (1999), no. 3, 517–528. MR 1670396, DOI 10.1016/S0040-9383(98)00028-7
- P. E. Newstead, Characteristic classes of stable bundles of rank $2$ over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972), 337–345. MR 316452, DOI 10.1090/S0002-9947-1972-0316452-9
- Nitin Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275–300. MR 1085642, DOI 10.1112/plms/s3-62.2.275
- Bernd Siebert and Gang Tian, Recursive relations for the cohomology ring of moduli spaces of stable bundles, Turkish J. Math. 19 (1995), no. 2, 131–144. MR 1349566
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297, DOI 10.1007/BF02698887
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5–79 (1995). MR 1320603, DOI 10.1007/BF02698895
- Michael Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992), no. 1, 131–149. MR 1152228
- Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317–353. MR 1273268, DOI 10.1007/BF01232244
- Michael Thaddeus, An introduction to the topology of the moduli space of stable bundles on a Riemann surface, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 71–99. MR 1423157 thad3 M. Thaddeus, On the Morse decomposition of the space of Higgs bundles on a curve, in preparation.
- Don Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 533–563. MR 1363070, DOI 10.1007/978-1-4612-4264-2_{2}0
Bibliographic Information
- Tamás Hausel
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, University of Texas, RLM 11.168, 26th and Speedway, Austin, Texas 78712
- Email: hausel@math.utexas.edu
- Michael Thaddeus
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- Email: thaddeus@math.columbia.edu
- Received by editor(s): June 10, 2002
- Published electronically: December 3, 2002
- Additional Notes: The first author was supported by NSF grant DMS–97–29992
The second author was supported by NSF grant DMS–98–08529 - © Copyright 2002 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 303-329
- MSC (2000): Primary 14H60; Secondary 14D20, 14H81, 32Q55, 58D27
- DOI: https://doi.org/10.1090/S0894-0347-02-00417-4
- MathSciNet review: 1949162