Multivariable cochain operations and little
-cubes
Authors:
James E. McClure and Jeffrey H. Smith
Journal:
J. Amer. Math. Soc. 16 (2003), 681-704
MSC (2000):
Primary 18D50; Secondary 55P48, 16E40
DOI:
https://doi.org/10.1090/S0894-0347-03-00419-3
Published electronically:
January 3, 2003
MathSciNet review:
1969208
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we construct a small
chain operad
which acts naturally on the normalized cochains
of a topological space. We also construct, for each
, a suboperad
which is quasi-isomorphic to the normalized singular chains of the little
-cubes operad. The case
leads to a substantial simplification of our earlier proof of Deligne's Hochschild cohomology conjecture.
- 1. Benson, D.J., Representations and Cohomology II: Cohomology of Groups and Modules. Cambridge University Press 1991. MR 93g:20099
- 2.
Berger, C., Combinatorial models for real configuration spaces and
-operads. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 37-52, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997. MR 98j:18014
- 3. Berger, C. and Fresse, B., Combinatorial operad actions on cochains. Preprint available at http://front.math.ucdavis.edu/math.AT/0109158
- 4.
Boardman, J.M. and Vogt, R.M., Homotopy-everything
-spaces. Bull. Amer. Math. Soc. 74 (1968), 1117-1122. MR 38:5215
- 5. Deligne, P., Letter to Stasheff et al. May 17, 1993.
- 6. Dold, A., Über die Steenrodschen Kohomologieoperationen. Annals of Math. (2) 73 (1961), 258-294. MR 23:A646
- 7. Dold, A., Lectures on Algebraic Topology. Springer-Verlag, Berlin-New York, 1972. MR 54:3685
- 8. Getzler, E., Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65-78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993. MR 95c:19002
- 9.
Hinich, V.A. and Schechtman, V.V., On homotopy limit of homotopy algebras.
-theory, arithmetic and geometry (Moscow, 1984-1986), 240-264, Lecture Notes in Mathematics, Volume 1289, Springer-Verlag, Berlin-New York, 1987. MR 89d:55052
- 10.
Hirschhorn, P., Model Categories and Their Localizations. Preprint available at http://www-math.mit.edu/
psh/
- 11.
Kadeishvili, T., The structure of the
-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27. MR 91a:18016
- 12. Kontsevich, M., Operads and Motives in Deformation Quantization. Lett. Math. Phys. 48 (1999), 35-72 MR 2000j:53119
- 13. Kontsevich, M. and Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, Volume I, 255-307, Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht, 2000. MR 2002e:18012
- 14. Kriz, I. and May, J.P., Operads, algebras, modules and motives. Asterisque 233 (1995). MR 96j:18006
- 15.
Mandell, M. A.,
algebras and
-adic homotopy theory. Topology 40 (2001), 43-94. MR 2001m:55025
- 16. May, J.P., The geometry of iterated loop spaces. Lectures Notes in Mathematics, Volume 271. Springer-Verlag, Berlin-New York, 1972. MR 54:8623b
- 17. McClure, J.E. and Smith, J.H., A solution of Deligne's Hochschild cohomology conjecture. Proceedings of the JAMI conference on Homotopy Theory. Contemp. Math. 293 (2002), 153-193.
- 18.
McClure, J.E. and Smith J.H., Cosimplicial objects and little
-cubes. I. Preprint available at http://front.math.ucdavis.edu/math.QA/0211368
- 19.
Smith, J.H., Simplicial group models for
. Israel J. Math. 66 (1989), 330-350. MR 91e:55014
- 20. Steenrod, N.E., Products of cocycles and extensions of mappings. Annals of Mathematics (2) 48 (1947), 290-320. MR 9:154a
- 21. Tamarkin, D., Another proof of M. Kontsevich formality theorem. Preprint available at http://front.math.ucdavis.edu/math.QA/9803025
- 22. Tamarkin, D., Formality of Chain Operad of Small Squares. Preprint available at http://front.math.ucdavis.edu/math.QA/9809164
- 23. Voronov, A., Homotopy Gerstenhaber algebras. Conférence Moshé Flato 1999, Volume II, 307-331, Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht, 2000. MR 2002d:55009
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 18D50, 55P48, 16E40
Retrieve articles in all journals with MSC (2000): 18D50, 55P48, 16E40
Additional Information
James E. McClure
Affiliation:
Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
Email:
mcclure@math.purdue.edu
Jeffrey H. Smith
Affiliation:
Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
Email:
jhs@math.purdue.edu
DOI:
https://doi.org/10.1090/S0894-0347-03-00419-3
Received by editor(s):
June 25, 2001
Received by editor(s) in revised form:
June 28, 2002
Published electronically:
January 3, 2003
Additional Notes:
The first author was partially supported by NSF grant DMS-9971953. He thanks the Lord for making his work possible
The second author was partially supported by NSF grant DMS-9971953
Article copyright:
© Copyright 2003
American Mathematical Society


