## Multivariable cochain operations and little $n$-cubes

HTML articles powered by AMS MathViewer

- by James E. McClure and Jeffrey H. Smith PDF
- J. Amer. Math. Soc.
**16**(2003), 681-704 Request permission

## Abstract:

In this paper we construct a small $E_\infty$ chain operad $\mathcal {S}$ which acts naturally on the normalized cochains $S^*X$ of a topological space. We also construct, for each $n$, a suboperad $\mathcal {S}_n$ which is quasi-isomorphic to the normalized singular chains of the little $n$-cubes operad. The case $n=2$ leads to a substantial simplification of our earlier proof of Deligne’s Hochschild cohomology conjecture.## References

- D. J. Benson,
*Representations and cohomology. II*, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR**1156302** - Clemens Berger,
*Combinatorial models for real configuration spaces and $E_n$-operads*, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 37–52. MR**1436916**, DOI 10.1090/conm/202/02582
BergerFresse Berger, C. and Fresse, B., Combinatorial operad actions on cochains. Preprint available at http://front.math.ucdavis.edu/math.AT/0109158
- J. M. Boardman and R. M. Vogt,
*Homotopy-everything $H$-spaces*, Bull. Amer. Math. Soc.**74**(1968), 1117–1122. MR**236922**, DOI 10.1090/S0002-9904-1968-12070-1
Deligne Deligne, P., Letter to Stasheff et al. May 17, 1993.
- Albrecht Dold,
*Über die Steenrodschen Kohomologieoperationen*, Ann. of Math. (2)**73**(1961), 258–294 (German). MR**123318**, DOI 10.2307/1970334 - A. Dold,
*Lectures on algebraic topology*, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR**0415602**, DOI 10.1007/978-3-662-00756-3 - Ezra Getzler,
*Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology*, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992) Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 65–78. MR**1261901** - V. A. Hinich and V. V. Schechtman,
*On homotopy limit of homotopy algebras*, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 240–264. MR**923138**, DOI 10.1007/BFb0078370
HH Hirschhorn, P., Model Categories and Their Localizations. Preprint available at http://www-math.mit.edu/$\sim$psh/
- T. V. Kadeishvili,
*The structure of the $A(\infty )$-algebra, and the Hochschild and Harrison cohomologies*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR**91**(1988), 19–27 (Russian, with English summary). MR**1029003** - Maxim Kontsevich,
*Operads and motives in deformation quantization*, Lett. Math. Phys.**48**(1999), no. 1, 35–72. Moshé Flato (1937–1998). MR**1718044**, DOI 10.1023/A:1007555725247 - Maxim Kontsevich and Yan Soibelman,
*Deformations of algebras over operads and the Deligne conjecture*, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. MR**1805894** - Igor Kříž and J. P. May,
*Operads, algebras, modules and motives*, Astérisque**233**(1995), iv+145pp (English, with English and French summaries). MR**1361938** - Michael A. Mandell,
*$E_\infty$ algebras and $p$-adic homotopy theory*, Topology**40**(2001), no. 1, 43–94. MR**1791268**, DOI 10.1016/S0040-9383(99)00053-1 - J. M. Boardman and R. M. Vogt,
*Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR**0420609**, DOI 10.1007/BFb0068547
MS McClure, J.E. and Smith, J.H., A solution of Deligne’s Hochschild cohomology conjecture. Proceedings of the JAMI conference on Homotopy Theory. Contemp. Math. 293 (2002), 153–193.
MS3 McClure, J.E. and Smith J.H., Cosimplicial objects and little $n$-cubes. I. Preprint available at http://front.math.ucdavis.edu/math.QA/0211368
- Jeffrey Henderson Smith,
*Simplicial group models for $\Omega ^nS^nX$*, Israel J. Math.**66**(1989), no. 1-3, 330–350. MR**1017171**, DOI 10.1007/BF02765902 - Garrett Birkhoff and Morgan Ward,
*A characterization of Boolean algebras*, Ann. of Math. (2)**40**(1939), 609–610. MR**9**, DOI 10.2307/1968945
T1 Tamarkin, D., Another proof of M. Kontsevich formality theorem. Preprint available at http://front.math.ucdavis.edu/math.QA/9803025
T2 Tamarkin, D., Formality of Chain Operad of Small Squares. Preprint available at http://front.math.ucdavis.edu/math.QA/9809164
- Alexander A. Voronov,
*Homotopy Gerstenhaber algebras*, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., vol. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307–331. MR**1805923**

## Additional Information

**James E. McClure**- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- Email: mcclure@math.purdue.edu
**Jeffrey H. Smith**- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- Email: jhs@math.purdue.edu
- Received by editor(s): June 25, 2001
- Received by editor(s) in revised form: June 28, 2002
- Published electronically: January 3, 2003
- Additional Notes: The first author was partially supported by NSF grant DMS-9971953. He thanks the Lord for making his work possible

The second author was partially supported by NSF grant DMS-9971953 - © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**16**(2003), 681-704 - MSC (2000): Primary 18D50; Secondary 55P48, 16E40
- DOI: https://doi.org/10.1090/S0894-0347-03-00419-3
- MathSciNet review: 1969208