$L^p$ improving bounds for averages along curves
HTML articles powered by AMS MathViewer
- by Terence Tao and James Wright;
- J. Amer. Math. Soc. 16 (2003), 605-638
- DOI: https://doi.org/10.1090/S0894-0347-03-00420-X
- Published electronically: January 28, 2003
- PDF | Request permission
Abstract:
We establish local $(L^p,L^q)$ mapping properties for averages on curves. The exponents are sharp except for endpoints.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- Anthony Carbery, Michael Christ, and James Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981–1015. MR 1683156, DOI 10.1090/S0894-0347-99-00309-4
- Michael Christ, Weak type $(1,1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1, 19–42. MR 951506, DOI 10.2307/1971461
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- Michael Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices 19 (1998), 1033–1048. MR 1654767, DOI 10.1155/S1073792898000610 ce M. Christ, M. B. Erdogan, Mixed-norm estimates for a restricted x-ray transform, preprint.
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Michael Christ and José Luis Rubio de Francia, Weak type $(1,1)$ bounds for rough operators. II, Invent. Math. 93 (1988), no. 1, 225–237. MR 943929, DOI 10.1007/BF01393693
- I. M. Gel′fand and M. I. Graev, Line complexes in the space $C^{n}$, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 39–52 (Russian). MR 238246
- I. M. Gel′fand, M. I. Graev, and Z. Ja. Šapiro, Differential forms and integral geometry, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 24–40 (Russian). MR 244919
- Michael Greenblatt, A method for proving $L^p$-boundedness of singular Radon transforms in codimension 1, Duke Math. J. 108 (2001), no. 2, 363–393. MR 1833395, DOI 10.1215/S0012-7094-01-10826-0
- Allan Greenleaf and Andreas Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35–56. MR 1293873, DOI 10.1515/crll.1994.455.35
- Allan Greenleaf and Andreas Seeger, Fourier integral operators with cusp singularities, Amer. J. Math. 120 (1998), no. 5, 1077–1119. MR 1646055, DOI 10.1353/ajm.1998.0036 gs:escorial A. Greenleaf, A. Seeger, Oscillatory and Fourier integral operators with degenerate canonical relations, preprint.
- Allan Greenleaf, Andreas Seeger, and Stephen Wainger, Estimates for generalized Radon transforms in three and four dimensions, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 243–254. MR 1771272, DOI 10.1090/conm/251/03873
- Allan Greenleaf, Andreas Seeger, and Stephen Wainger, On X-ray transforms for rigid line complexes and integrals over curves in $\textbf {R}^4$, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3533–3545. MR 1670367, DOI 10.1090/S0002-9939-99-05379-4
- Allan Greenleaf and Gunther Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), no. 1, 205–240. MR 1016420, DOI 10.1215/S0012-7094-89-05811-0
- A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 443–466 (English, with French summary). MR 1070835, DOI 10.5802/aif.1220
- Allan Greenleaf and Gunther Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II, Duke Math. J. 64 (1991), no. 3, 415–444. MR 1141280, DOI 10.1215/S0012-7094-91-06422-7
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, RI, 1977. MR 516965, DOI 10.1090/surv/014
- Victor Guillemin, Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M_{2,1}$, Annals of Mathematics Studies, vol. 121, Princeton University Press, Princeton, NJ, 1989. MR 999388, DOI 10.1515/9781400882410
- Sigurđur Helgason, A duality in integral geometry on symmetric spaces, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha Co., Ltd., Tokyo, 1966, pp. 37–56. MR 229191
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 388463, DOI 10.1007/BF02392052
- Walter Littman, $L^{p}-L^{q}$-estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Proc. Sympos. Pure Math., Vol. XXIII, Amer. Math. Soc., Providence, RI, 1973, pp. 479–481. MR 358443
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- David McMichael, Damping oscillatory integrals with polynomial phase, Math. Scand. 73 (1993), no. 2, 215–228. MR 1269260, DOI 10.7146/math.scand.a-12467
- Daniel M. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), no. 1, 56–60. MR 866429, DOI 10.1090/S0002-9939-1987-0866429-6
- Daniel M. Oberlin, Multilinear proofs for two theorems on circular averages, Colloq. Math. 63 (1992), no. 2, 187–190. MR 1180631, DOI 10.4064/cm-63-2-187-190
- Daniel M. Oberlin, A convolution estimate for a measure on a curve in $\mathbf R^4$, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1355–1361. MR 1363436, DOI 10.1090/S0002-9939-97-03716-7
- Daniel M. Oberlin, A convolution estimate for a measure on a curve in $\mathbf R^4$. II, Proc. Amer. Math. Soc. 127 (1999), no. 1, 217–221. MR 1476381, DOI 10.1090/S0002-9939-99-04690-0
- Daniel M. Oberlin, An estimate for a restricted X-ray transform, Canad. Math. Bull. 43 (2000), no. 4, 472–476. MR 1793949, DOI 10.4153/CMB-2000-055-8
- Daniel Oberlin, Hart F. Smith, and Christopher D. Sogge, Averages over curves with torsion, Math. Res. Lett. 5 (1998), no. 4, 535–539. MR 1653332, DOI 10.4310/MRL.1998.v5.n4.a10 laba:xray I. Łaba, T. Tao, An x-ray estimate in $\mathbf {R}^n$, to appear, Revista Iberoamericana.
- Duong H. Phong, Regularity of Fourier integral operators, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 862–874. MR 1403986
- D. H. Phong, Singular integrals and Fourier integral operators, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 286–320. MR 1315553
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- D. H. Phong and E. M. Stein, Radon transforms and torsion, Internat. Math. Res. Notices 4 (1991), 49–60. MR 1121165, DOI 10.1155/S1073792891000077
- D. H. Phong and E. M. Stein, On a stopping process for oscillatory integrals, J. Geom. Anal. 4 (1994), no. 1, 105–120. MR 1274140, DOI 10.1007/BF02921595
- D. H. Phong and E. M. Stein, Models of degenerate Fourier integral operators and Radon transforms, Ann. of Math. (2) 140 (1994), no. 3, 703–722. MR 1307901, DOI 10.2307/2118622
- D. H. Phong and E. M. Stein, The Newton polyhedron and oscillatory integral operators, Acta Math. 179 (1997), no. 1, 105–152. MR 1484770, DOI 10.1007/BF02392721
- Fulvio Ricci and Elias M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), no. 1, 56–84. MR 937632, DOI 10.1016/0022-1236(88)90132-2
- W. Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), no. 1, 103–122. MR 1388870, DOI 10.1090/S0894-0347-97-00217-8
- Silvia Secco, $L^p$-improving properties of measures supported on curves on the Heisenberg group, Studia Math. 132 (1999), no. 2, 179–201. MR 1669682, DOI 10.4064/sm-132-2-179-201
- Andreas Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), no. 3, 685–745. MR 1240601, DOI 10.1215/S0012-7094-93-07127-X
- Andreas Seeger, Radon transforms and finite type conditions, J. Amer. Math. Soc. 11 (1998), no. 4, 869–897. MR 1623430, DOI 10.1090/S0894-0347-98-00280-X
- Elias M. Stein, Oscillatory integrals related to Radon-like transforms, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), 1995, pp. 535–551. MR 1364908
- Thomas Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), no. 3, 651–674. MR 1363209, DOI 10.4171/RMI/188
- Thomas Wolff, A Kakeya-type problem for circles, Amer. J. Math. 119 (1997), no. 5, 985–1026. MR 1473067, DOI 10.1353/ajm.1997.0034
- Thomas Wolff, A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoamericana 14 (1998), no. 3, 561–600. MR 1681585, DOI 10.4171/RMI/245
- Thomas Wolff, Recent work connected with the Kakeya problem, Prospects in mathematics (Princeton, NJ, 1996) Amer. Math. Soc., Providence, RI, 1999, pp. 129–162. MR 1660476
- T. Wolff, Local smoothing type estimates on $L^p$ for large $p$, Geom. Funct. Anal. 10 (2000), no. 5, 1237–1288. MR 1800068, DOI 10.1007/PL00001652
Bibliographic Information
- Terence Tao
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- James Wright
- Affiliation: School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
- MR Author ID: 325654
- Email: wright@maths.ed.ac.uk
- Received by editor(s): March 19, 2002
- Published electronically: January 28, 2003
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 605-638
- MSC (2000): Primary 42B15
- DOI: https://doi.org/10.1090/S0894-0347-03-00420-X
- MathSciNet review: 1969206