Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Resultants and Chow forms via exterior syzygies
HTML articles powered by AMS MathViewer

by David Eisenbud, Frank-Olaf Schreyer and Jerzy Weyman
J. Amer. Math. Soc. 16 (2003), 537-579
DOI: https://doi.org/10.1090/S0894-0347-03-00423-5
Published electronically: February 27, 2003

Abstract:

Given a sheaf on a projective space ${\mathbf P}^n$, we define a sequence of canonical and effectively computable Chow complexes on the Grassmannians of planes in ${\mathbf P}^n$, generalizing the well-known Beilinson monad on ${\mathbf P}^n$. If the sheaf has dimension $k$, then the Chow form of the associated $k$-cycle is the determinant of the Chow complex on the Grassmannian of planes of codimension $k+1$. Using the theory of vector bundles and the canonical nature of the complexes, we are able to give explicit determinantal and Pfaffian formulas for resultants in some cases where no polynomial formulas were known. For example, the Horrocks–Mumford bundle gives rise to a polynomial formula for the resultant of five homogeneous forms of degree eight in five variables.
References
    [Angéniol and Lejeune-Jalabert 1989] AngeniolandLejeune-Jalabert1989 B. Angéniol and M. Lejeune-Jalabert: Calcul différentiel et classes caractéristiques en géométrie algébrique. Travaux en Cours 38, Hermann, Paris, 1989. J. Backelin and J. Herzog: On Ulrich-modules over hypersurface rings. Commutative algebra (Berkeley, CA, 1987), 63–68, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989. A. Beauville: Determinantal hypersurfaces. Dedicated to William Fulton on the occasion of his 60th birthday. Mich. Math. J. 48 (2000) 39–64.
  • John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
  • I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
  • [Bézout 1779] Bezout1779 E. Bézout: Théorie générale des équation algébriques, Pierres, Paris 1779. [Brennan et al. 1987] Brennanetal.1987 J. Brennan, J. Herzog, and B. Ulrich: Maximally generated Cohen–Macaulay modules. Math. Scand. 61 (1987) 181–203.
  • S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089, DOI 10.1007/BF03046994
  • R.-O. Buchweitz and F.-O. Schreyer: Complete intersections of two quadrics, hyperelliptic curves and their Clifford Algebras, manuscript, 2002.
  • Ragnar-Olaf Buchweitz, David Eisenbud, and Jürgen Herzog, Cohen-Macaulay modules on quadrics, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 58–116. MR 915169, DOI 10.1007/BFb0078838
  • [Busé et al. 2001] Buseetal.2001 L. Busé, M. Elkadi and B. Mourrain: Resultant over the residual of a complete intersection. J. Pure Appl. Algebra 164, No.1-2, 35-57 (2001). C. D’Andrea: Macaulay style formulas for sparse resultants. Trans. Am. Math. Soc. 354, No.7, 2595-2629 (2002). C. D’Andrea and A. Dickenstein: Explicit formulas for the multivariate resultant. J. Pure Appl. Algebra 164, No.1-2, 59-86 (2001). A. Cayley: On the theory of elimination. Cambridge and Dublin Mathematical J. 3 (1848) 116–120. S. Donkin: Rational representations of algebraic groups. Tensor products and filtration. Lecture Notes in Math. 1140. Springer, Berlin, 1985. D. Eisenbud: Linear sections of determinantal varieties. American J. Math. 110 (1988) 541–575. D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry. Springer Verlag, 1995.
  • M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 0002002
  • [Eisenbud et al. 2001]Eisenbudetal.2001 D. Eisenbud, G. Fløystad and F.-O. Schreyer: Sheaf cohomology and free resolutions over the exterior algebra. Preprint (2001), arXiv.org/abs/math.AG/0104203. W. Fulton: Intersection Theory. Springer, New York, 1984.
  • Alfred Rosenblatt, Sur les points singuliers des équations différentielles, C. R. Acad. Sci. Paris 209 (1939), 10–11 (French). MR 85
  • [Gel’fand et al. 1994]Gelfandetal.1994 I. M. Gelfand, M. Kapranov, and A. Zelevinsky: Discriminants, resultants, and multidimensional determinants. Birkhäuser, Boston, 1994. D. Grayson and M. Stillman: Macaulay2. Available online at http://www.math.uiuc.edu/~Macaulay2/. W. Haboush: A short proof of the Kempf vanishing theorem. Invent. Math. 56, 109-112 (1980). D. Hanes: Special condition on maximal Cohen–Macaulay modules, and applications to the theory of multiplicities. Thesis, Michigan, 2000. R. Hartshorne: Algebraic Geometry. Springer Verlag, 1977. R. Hartshorne and A. Hirschowitz: Cohomology of the general instanton bundle. Ann. scient. Éc. Norm. Sup. a série 15 (1982) 365–390. G. Horrocks: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc., III. Ser. 14, 689–713 (1964). G. Horrocks, D. Mumford: A rank $2$ vector bundle on ${\mathbf P}^4$ with 15,000 symmetries. Topology 12 (1973) 63–81. B. Iverson: Cohomology of sheaves. Springer-Verlag, New York, 1986. J. C. Jantzen: Representations of algebraic groups. Pure and Applied Mathematics, 131, Academic Press, Boston, MA, 1987. J.-P. Jouanolou: Aspects invariants de l’élimination. Adv. Math. 114 (1995) 1–174. G. R. Kempf: Linear systems on homogeneous spaces. Ann. of Math., II. Ser. 103, 557-591 (1976). A. Khetan: Determinantal Formula for the Chow Form of a Toric Surface, In ISSAC Proceedings, 145–150, ACM 2002. M. Kline: Mathematical thought from ancient to modern times. Oxford University Press, New York 1972. F. Knudsen and D. Mumford: The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div”. Math. Scand. 39 (1976) 19–55. G. W. Leibniz: Mathematische Schriften, herausgegeben von C. I. Gerhardt, Letter to l’Hospital 28 April 1693, volume II, p. 239; Vorwort volume VII, pp. 5. Georg Olms Verlag Hildesheim, New York 1971. , Ch. Okonek, M. Schneider, and H. Spindler: Vector Bundles on Complex Projective Spaces. Birkhäuser, Boston 1980. C. Peskine and L. Szpiro: Liaison des variétés algébriques I. Invent. Math. 26 (1974) 271–302. R. Stanley: Theory and application of plane partitions. Studies in Appl. Math. 1 (1971) 167–187 and 259–279. R. G. Swan: $K$-theory of quadric hypersurfaces. Ann. of Math. 122 (1985) 113–153. J. J. Sylvester: A method of determining by mere inspection the derivatives from two equations of any degree. Philosophical Magazine XVI (1840) 132–135. Memoir on the dialytic method of elimination. Part I. Philsophical Magazine XXI (1842) 534–539. Reprinted in: The collected Mathematical Papers of James Joseph Sylvester, Vol. I. Chelsea New York 1973, reprint of the Cambridge 1904 edition. A. A. Tikhomirov: The main component of the moduli space of mathematical instanton vector bundles on ${\mathbf P}^3$. Journal of the Mathematical Sciences 86 (1997) 3004–3087. (Translation from the Russian of Itogi Nauki i Tkhniki. Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematischeskie Obzory, Vol 25, Algebraic Geometry-2, 1995.) B. Ulrich: Gorenstein rings and modules with high numbers of generators. Math. Z. 188 (1984) 23–32. V. Vinnikov: Complete description of determinantal representations of smooth irreducible curves. Linear Algebra Appl. 125 (1989), 103–140.
  • L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
Similar Articles
Bibliographic Information
  • David Eisenbud
  • Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
  • MR Author ID: 62330
  • ORCID: 0000-0002-5418-5579
  • Email: eisenbud@math.berkeley.edu
  • Frank-Olaf Schreyer
  • Affiliation: Mathematik und Informatik, Geb. 27, Universität des Saarlandes, D-66123 Saarbrücken, Germany
  • MR Author ID: 156975
  • Email: schreyer@math.uni-sb.de
  • Jerzy Weyman
  • Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
  • MR Author ID: 182230
  • ORCID: 0000-0003-1923-0060
  • Email: weyman@neu.edu
  • Received by editor(s): November 16, 2001
  • Published electronically: February 27, 2003
  • © Copyright 2003 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 16 (2003), 537-579
  • MSC (2000): Primary 13P05, 14Q99; Secondary 13D25, 14F05
  • DOI: https://doi.org/10.1090/S0894-0347-03-00423-5
  • MathSciNet review: 1969204