## Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram

HTML articles powered by AMS MathViewer

- by Andrei Okounkov and Nikolai Reshetikhin PDF
- J. Amer. Math. Soc.
**16**(2003), 581-603 Request permission

## Abstract:

The Schur process is a time-dependent analog of the Schur measure on partitions studied by A. Okounkov in*Infinite wedge and random partitions*, Selecta Math., New Ser.

**7**(2001), 57–81. Our first result is that the correlation functions of the Schur process are determinants with a kernel that has a nice contour integral representation in terms of the parameters of the process. This general result is then applied to a particular specialization of the Schur process, namely to random 3-dimensional Young diagrams. The local geometry of a large random 3-dimensional diagram is described in terms of a determinantal point process on a 2-dimensional lattice with the incomplete beta function kernel (which generalizes the discrete sine kernel). A brief discussion of the universality of this answer concludes the paper.

## References

- Alexei Borodin, Andrei Okounkov, and Grigori Olshanski,
*Asymptotics of Plancherel measures for symmetric groups*, J. Amer. Math. Soc.**13**(2000), no. 3, 481–515. MR**1758751**, DOI 10.1090/S0894-0347-00-00337-4 - Robert Burton and Robin Pemantle,
*Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances*, Ann. Probab.**21**(1993), no. 3, 1329–1371. MR**1235419** - Raphaël Cerf and Richard Kenyon,
*The low-temperature expansion of the Wulff crystal in the 3D Ising model*, Comm. Math. Phys.**222**(2001), no. 1, 147–179. MR**1853867**, DOI 10.1007/s002200100505 - Henry Cohn, Noam Elkies, and James Propp,
*Local statistics for random domino tilings of the Aztec diamond*, Duke Math. J.**85**(1996), no. 1, 117–166. MR**1412441**, DOI 10.1215/S0012-7094-96-08506-3 - Henry Cohn, Richard Kenyon, and James Propp,
*A variational principle for domino tilings*, J. Amer. Math. Soc.**14**(2001), no. 2, 297–346. MR**1815214**, DOI 10.1090/S0894-0347-00-00355-6 - L. D. Faddeev and R. M. Kashaev,
*Quantum dilogarithm*, Modern Phys. Lett. A**9**(1994), no. 5, 427–434. MR**1264393**, DOI 10.1142/S0217732394000447
FS P. Ferrari and H. Spohn, - Kurt Johansson,
*Discrete orthogonal polynomial ensembles and the Plancherel measure*, Ann. of Math. (2)**153**(2001), no. 1, 259–296. MR**1826414**, DOI 10.2307/2661375 - Kurt Johansson,
*Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices*, Comm. Math. Phys.**215**(2001), no. 3, 683–705. MR**1810949**, DOI 10.1007/s002200000328
J3 K. Johansson, - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 2nd ed., Cambridge University Press, Cambridge, 1985. MR**823672** - Samuel Karlin and James McGregor,
*Coincidence probabilities*, Pacific J. Math.**9**(1959), 1141–1164. MR**114248**, DOI 10.2140/pjm.1959.9.1141 - Richard Kenyon,
*Local statistics of lattice dimers*, Ann. Inst. H. Poincaré Probab. Statist.**33**(1997), no. 5, 591–618 (English, with English and French summaries). MR**1473567**, DOI 10.1016/S0246-0203(97)80106-9 - Richard Kenyon,
*The planar dimer model with boundary: a survey*, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 307–328. MR**1798998** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Andrei Okounkov,
*Infinite wedge and random partitions*, Selecta Math. (N.S.)**7**(2001), no. 1, 57–81. MR**1856553**, DOI 10.1007/PL00001398
O2 A. Okounkov,

*Step fluctuations for a faceted crystal*, cond-mat/0212456.

*Non-intersecting paths, random tilings, and random matrices*, math.PR/ 0011250, Probab. Theory Related Fields

**123**(2002), 225–280.

*Symmetric functions and random partitions*, Symmetric functions 2001: Surveys of Developments and Perspectives, edited by S. Fomin, Kluwer Academic Publishers, 2002. PS M. Praehofer and H. Spohn,

*Scale Invariance of the PNG Droplet and the Airy Process*, math.PR/0105240, J. Statist. Phys.

**108**(2002), 1071–1106. V A. Vershik, talk at the 1997 conference on Formal Power Series and Algebraic Combinatorics, Vienna.

## Additional Information

**Andrei Okounkov**- Affiliation: Department of Mathematics, University of California at Berkeley, Evans Hall #3840, Berkeley, California 94720-3840
- MR Author ID: 351622
- ORCID: 0000-0001-8956-1792
- Email: okounkov@math.berkeley.edu
**Nikolai Reshetikhin**- Affiliation: Department of Mathematics, University of California at Berkeley, Evans Hall #3840, Berkeley, California 94720-3840
- MR Author ID: 147195
- Email: reshetik@math.berkeley.edu
- Received by editor(s): December 8, 2001
- Published electronically: March 3, 2003
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**16**(2003), 581-603 - MSC (2000): Primary 05E05, 60G55
- DOI: https://doi.org/10.1090/S0894-0347-03-00425-9
- MathSciNet review: 1969205