
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 16, Number 4, Pages 751–777
S 0894-0347(03)00427-2
Article electronically published on March 21, 2003

QUASIANALYTIC DENJOY-CARLEMAN CLASSES AND
O-MINIMALITY

J.-P. ROLIN, P. SPEISSEGGER, AND A. J. WILKIE

Introduction

The work in this paper has been motivated by two questions from the theory of
o-minimality (see for instance [6]): (1) Does every o-minimal expansion of the real
field admit analytic cell decomposition? (2) Does there exist a “largest” o-minimal
expansion M of the real field, in the sense that any other o-minimal expansion of
the real field is a reduct of M? We describe here a new method of constructing
o-minimal structures, based on a normalization algorithm inspired by Bierstone
and Milman [4]. We then apply this construction to certain quasianalytic Denjoy-
Carleman classes (already suggested by Van den Dries in [6]) and thereby answer
both questions negatively.

Let M = (M0,M1, . . . ) with 1 ≤M0 ≤M1 ≤ · · · be a sequence of real numbers
and B = [a1, b1]× · · · × [an, bn] with ai < bi for i = 1, . . . , n. We let C0

B(M) be the
collection of all functions f : B −→ R for which there exist an open neighborhood
U of B, a C∞ function g : U −→ R and a constant A > 0 (all depending on f)
such that f = g

∣∣B and

(DC)
∣∣∣g(α)(x)

∣∣∣ ≤ A|α|+1 ·M|α| for all x ∈ U and α ∈ Nn,

where |α| := α1 + · · · + αn. We call C0
B(M) the Denjoy-Carleman class on B

associated to M . (If Mi = i! for all i ≥ 0, then C0
B(M) is the class of all real-valued

functions on B that extend analytically to an open neighborhood of B.) Without
loss of generality (see [11, 19]), we shall assume that M is logarithmically convex
(or log-convex for short), that is, M2

i ≤Mi−1Mi+1 for all i > 0.
The class C0

B(M) is called quasianalytic if for any f ∈ C0
B(M) and any x ∈ B,

the Taylor series f̂x of f at x uniquely determines f among all functions in C0
B(M).

It is well known [11, 19] that C0
B(M) is quasianalytic if and only if

(QA)
∞∑
i=0

Mi

Mi+1
=∞.

In general, the classes C0
B(M) will not be closed under differentiation. However,

the classes CB(M) :=
⋃∞
j=0 C0

B(M (j)), where M (j) := (Mj ,Mj+1, . . . ), obviously
are. Moreover, we would like the system of all CB(M), where M is fixed and
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B = [a1, b1] × · · · × [an, bn] with ai < bi for i = 1, . . . , n and n ∈ N, to be closed
under compositions, taking implicit functions and division by monomial terms. We
show in the appendix, based on the existing literature, that this is the case if the
sequence M is strongly log-convex, which means by definition that the sequence
(Mi/i!) is log-convex.

For each n ∈ N and f ∈ C[−1,1]n(M), we define f̃ : Rn −→ R by f̃(x) := f(x)
if x ∈ [−1, 1]n and f̃(x) := 0 otherwise. We let RC(M) be the expansion of the
real field by all f̃ for f ∈ C[−1,1]n and n ∈ N. Building on the closure properties
mentioned above, we establish

Theorem 1. If M is strongly log-convex and satisfies (QA), then the structure
RC(M) is model complete, o-minimal, polynomially bounded and admits C∞ cell
decomposition.

The model-completeness of RC(M) can be rephrased as follows: a set S ⊆ Rn
is C(M)-semianalytic if for each point p ∈ Rn there is a box B as above con-
taining p in its interior such that S ∩ B is a finite union of sets of the form
{x ∈ B : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0} with f, g1, . . . , gk ∈ CB(M). A set
X ⊆ Rm is C(M)-subanalytic if each point in Rm has a neighborhood U such
that X ∩U is the image of a bounded C(M)-semianalytic set in Rn for some n ≥ m
under the projection map (x1, . . . , xn) 7→ (x1, . . . , xm) : Rn → Rm. Then Theo-
rem 1 says that the complement of a C(M)-subanalytic set is C(M)-subanalytic.
Furthermore, the o-minimality and polynomial boundedness have numerous conse-
quences, such as  Lojasiewicz inequalities; see [15] and see [7] for a survey of such
consequences.

Our proof of Theorem 1 actually shows (see Theorem 5.2) that the elimina-
tion down to only existential quantifiers is “explicit” in the sense of [10] (where a
corresponding theorem is proved for real analytic functions).

Furthermore, quasianalytic Denjoy-Carleman classes arising from strongly log-
convex sequences are ubiquitous in the following sense (inspired by a theorem of
Mandelbrojt [14]):

Theorem 2. (1) Given any C∞ function f : U −→ R, where U is an open
neighborhood of [−1, 1]n and n ∈ N, there exist strongly log-convex sequences
M and N , each satisfying (QA), and functions f1 ∈ C0

[−1,1]n(M) and f2 ∈
C0

[−1,1]n(N) such that f(x) = f1(x) + f2(x) for all x ∈ [−1, 1]n.
(2) There exists a strongly log-convex sequence M satisfying (QA) and a func-

tion f ∈ C0
[−1,1](M) such that f is nowhere analytic.

Combining Theorem 1 with Theorem 2, we answer the two questions from the
theory of o-minimal structures posed at the beginning of this introduction:

Corollary. (1) There are strongly log-convex sequences M and N , each sat-
isfying (QA), such that RC(M) and RC(N) are not both reducts of any one
o-minimal expansion of the real field. Hence, there is no largest o-minimal
expansion of the real field.

(2) There is a strongly log-convex sequence M satisfying (QA) such that RC(M)

does not admit analytic cell decomposition.

Indeed, using Theorem 2(1), we can construct o-minimal expansions R1 and R2

of the real field whose amalgamation defines the set Z of all integers.
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The idea for the proof of Theorem 1 is as follows. We try to follow the construc-
tions of the o-minimal structures in [8, 9]. The main ingredients there are a Weier-
strass Preparation Theorem due to Tougeron and an adaptation of Gabrielov’s fiber
cutting argument to the non-Noetherian case. The main problem about transfer-
ring these ideas to the situation in this paper is that quasianalytic Denjoy-Carleman
classes are not known to satisfy any kind of Weierstrass Preparation Theorem suit-
able to our purposes (see [5]).

However, Bierstone and Milman’s theorem on resolution of singularities [4] ap-
plies to our situation and can indeed be used in place of Weierstrass Preparation.
In fact, [4] is more general than what is needed here; we only make use of normal-
ization for hypersurfaces. Thus, instead of directly appealing to [4], we use some
of the ideas in [3, Section 4] to produce a normalization algorithm for our situation
(see Theorem 2.5).

The contents of this paper are organized as follows. To simplify notations (and
for easy reference), most of the paper is written under axiomatic assumptions, which
are motivated by the closure properties of the Denjoy-Carleman classes discussed
above. We briefly present some key points of the Newton algorithm in Section 1, in
such a way that our normalization algorithm, developed in Section 2, can readily
be seen as a generalization of the two-variable case. In Sections 3 and 4 we combine
this algorithm with the fiber cutting arguments of [8]. Finally, we prove Theorem 1
in Section 5. In the appendix, we indicate how the closure properties for the system
of all CB(M) are obtained, and we prove Theorem 2.

1. Newton algorithm in two variables

We recall here some of the ideas of the Newton algorithm for arbitrary real power
series of two variables X and Y . These ideas will be adapted in Section 2 to the
setting described in the introduction.

Let f(X,Y ) ∈ R[[X,Y ]] be nonzero; we want to use (formal) blowings-up with
center the origin to transform f into a normal series, that is, a series of the form
XαY βg(X,Y ), where α, β ∈ N and g ∈ R[[X,Y ]] is a unit. To do so, we use blow-up
substitutions representing the (formal) charts of such a blowing-up: for λ ∈ R we let
bλ : R[[X,Y ]] −→ R[[X,Y ]] be the R-algebra homomorphism defined by bλ(X) := X
and bλ(Y ) := X(λ + Y ), and we let b∞ : R[[X,Y ]] −→ R[[X,Y ]] be the R-algebra
homomorphism defined by b∞(X) := XY and b∞(Y ) := Y .

By factoring out a power of X , we may assume that f is regular of order d in Y ,
that is, ordY f(0, Y ) = d. Of course, a single application of a blow-up substitution
does not in general transform f into a normal series. Instead, we hope that such
an application lowers ordY f(0, Y ); however, in order for such a substitution to
represent a meaningful geometric operation (as needed in Section 3), we will need
that ordY bλ f(0, Y ) < ordY f(0, Y ) for all λ ∈ R ∪ {∞}. This is not always the
case, and other kinds of substitutions are needed to handle certain f .

For example, assume that the term of f of degree d−1 in Y is not zero. Then by
the implicit function theorem, there is α(X) ∈ R[[X ]] such that ∂f/∂Y (X,α(X)) =
0. Substituting Y −α(X) for Y (a translation substitution) changes f into a series
g such that ordY g(0, Y ) = d and the term of g of degree d− 1 in Y is zero. Thus,
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we may assume that

f(X,Y ) = Y dU(X,Y ) +
∑
k∈K

ak(X)Y k

= Y dU(X,Y ) +
∑
k∈K

XrkUk(X)Y k,
(1.1)

where K ⊆ {0, . . . , d−2} and U(X,Y ) ∈ R[[X,Y ]] and all Uk(X) ∈ R[[X ]] are units.
Since f(X,Y ) is normal if K = ∅, we assume also that K 6= ∅. As Section 2 will
show, the way we removed the Y d−1-term preserves ordY f(0, Y ) = d, so rk 6= 0 for
all k ∈ K. Further replacing X by Xd! (a power substitution), we may also assume
that rk is divisible by d − k for each k ∈ K. We now let l = l(f) ∈ K be maximal
such that

rl
d− l ≤

rk
d− k for all k ∈ K.

In this situation, we claim that the pair (d, rl) is lowered lexicographically by the
application of bλ for any λ ∈ R ∪ {∞} (after possibly factoring out some power of
X).

First, we consider the case λ =∞. Then

b∞ f(X,Y ) = Y dU(XY, Y ) +
∑
k∈K

XrkUk(XY )Y k+rk ,

and since k + rk ≥ d for all k ∈ K, it follows that b∞ f is normal.
Second, let λ ∈ R be nonzero. Then

bλ f(X,Y ) = Xd

(
(λ + Y )dU(X,X(λ+ Y )) +

∑
k∈K

Xrk−(d−k)Uk(X)(λ+ Y )k
)

= Xdg(X,Y ), say.

Since d−1 /∈ K, g(0, Y ) has a nonzero coefficient for Y d−1, so ordY g(0, Y ) ≤ d−1.
Finally, for λ = 0 we have

b0 f(X,Y ) = Xd

(
Y dU(X,XY ) +

∑
k∈K

Xrk−(d−k)Uk(X)Y k
)
.

Now note that rk−(d−k) is divisible by d−k for each k ∈ K. Hence b0 f = Xdg with
either ordY g(0, Y ) < ordY f(0, Y ), or ordY g(0, Y ) = ordY f(0, Y ) and rl(g) < rl(f).

In the situation where X = (X1, . . . , Xn) is a tuple of variables rather than a
single variable, the property of having no term of degree d− 1 in Y is not sufficient
to write f as in (1.1). Instead, if

f(X,Y ) = Y dU(X,Y ) +
∑
k∈K

ak(X)Y k

with K ⊆ {0, . . . , d− 2}, U ∈ R[[X,Y ]] a unit and ak(X) ∈ R[[X ]] nonunits different
from 0, we first need to work inductively on the ak(X)’s to reduce them to the form
ak(X) = XrkUk(X), such that rk ∈ Nn and Uk(X) ∈ R[[X ]] is a unit for each k ∈ K
and, in addition, the monomials Xrk are linearly ordered by divisibility (Step 2 of
Section 2).
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2. A normalization algorithm

Let X = (X1, . . . , Xn), and write X ′ := (X1, . . . , Xn−1) if n > 0.

Definition 2.1. A series f ∈ R[[X ]] is called normal if f(X) = Xr · U(X) with
r ∈ Nn and U ∈ R[[X ]] a unit. (This terminology has its origin in “normal crossings”,
as used for instance in [4].)

A set {f1, . . . , fl} ⊆ R[[X ]] of series is normal if fk(X) = XrkUk(X), with
rk ∈ Nn and Uk a unit for each k, and the set of monomials {Xr1, . . . , Xrl} is
linearly ordered by divisibility. (The divisibility relation for monomials Xα with
α ∈ Rn is given by the product ordering on their exponents α.)

The following observations are elementary (see for instance [3, Lemma 4.7].)

Lemma 2.2. (1) Let f1, . . . , fl ∈ R[[X ]]. Then f1 · · · fl is normal if and only
if each fk is normal.

(2) Let f1, . . . , fl ∈ R[[X ]], and assume that all fk, for k = 1, . . . , l, and all
fk − fk′ , for 0 ≤ k < k′ ≤ l, are normal. Then {f1, . . . , fl} is normal.

For 1 ≤ i ≤ n and an integer q > 0 we let p+
i,q, p

−
i,q : R[[X ]] −→ R[[X ]] be the

R-algebra homomorphisms defined by

p+
i,q(Xj) :=

{
Xq
i if j = i,

Xj otherwise,

and

p−i,q(Xj) :=

{
−Xq

i if j = i,

Xj otherwise.

Also, for 1 ≤ i ≤ n and α ∈ R[[X1, . . . , Xi−1]] such that α(0) = 0, we let tα :
R[[X ]] −→ R[[X ]] be the R-algebra homomorphism given by

tα(Xj) :=

{
Xi + α(X1, . . . , Xi−1) if j = i,

Xj otherwise.

Next, for i > 1 and c = (c1, . . . , ci−1) ∈ Ri−1, we let li,c : R[[X ]] −→ R[[X ]] be the
R-algebra homomorphism given by

li,c(Xj) :=

{
Xj + cjXi if 1 ≤ j < i,

Xj otherwise.

Finally, for 1 ≤ i < j ≤ n and λ ∈ R, we let bi,jλ : R[[X ]] −→ R[[X ]] be the R-algebra
homomorphism given by

bi,jλ (Xk) :=

{
Xi(λ+Xj) if k = j,

Xk otherwise,

and we let bi,j∞ : R[[X ]] −→ R[[X ]] be the R-algebra homomorphism defined by

bi,j∞ (Xk) :=

{
XiXj if k = i,

Xk otherwise.

For the remainder of this section, we fix an arbitrary family D = (Dn)n∈N, where
each Dn is an R-subalgebra of R[[X ]] containing R[X ] as a subalgebra.
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Definition 2.3. A D-admissible substitution is any one of the following collec-
tions of R-algebra homomorphisms R[[X ]] −→ R[[X ]]:

(1) τ = {li,c} for some 1 < i ≤ n and c ∈ Ri−1 (a linear substitution);
(2) τ = {tα} for some 1 < i ≤ n and α ∈ Di−1 with α(0) = 0 (a translation

substitution);
(3) τ = {p+

i,q, p
−
i,q} for some 1 ≤ i ≤ n and integer q > 0 (a power substitu-

tion);
(4) τ = bi,j =

{
bi,jλ : λ ∈ R ∪ {∞}

}
for some 1 ≤ i < j ≤ n (a blow-up

substitution).

If D is clear from context, we shall simply refer to D-admissible substitutions as
admissible.

Remark. The choice of the collections of homomorphisms above is due to the fact
that when the corresponding substitutions are interpreted as geometric operations
in Section 3, the members of such a collection will represent charts of the same
geometric operation.

We assume from now on that

(Q1) Dn ⊆ Dn+1 for all n;
(Q2) if f ∈ Dm and g1, . . . , gm ∈ Dn such that g1(0) = · · · = gm(0) = 0, then

f(g1, . . . , gm) ∈ Dn;
(Q3) each Dn is closed under taking partial derivatives;
(Q4) if f ∈ Dn and g ∈ R[[X ]] are such that f(X) = Xi · g(X) for some i ≤ n,

then g ∈ Dn;
(Q5) if n > 0 and f ∈ Dn are such that f(0) = 0 and (∂f/∂Xn)(0) 6= 0, there is

an α ∈ Dn−1 with α(0) = 0 such that f(X ′, α(X ′)) = 0.

Remarks 2.4. (1) Let τ be an admissible substitution. Then f ∈ R[[X ]] is a unit
if and only if every member of τf is a unit. Moreover, if f ∈ R[[X ]] is normal and
τ is a power substitution or a blow-up substitution, then every member of τf is
normal.

(2) It follows from assumptions (Q2) and (Q4) that if f ∈ Dn and

f(X) = (Xi − a(X1, . . . , Xi−1))g(X)

with g ∈ R[[X ]] and 1 ≤ i ≤ n, a ∈ Di−1 and a(0) = 0, then g ∈ Dn.
(3) The following observation will be used in Section 3: In the situation of (Q5),

there is for each nonzero µ ∈ Nn−1 a positive integer k such that α(µ) ∈ u−kR,
where R := Z

[
f (ν)(X ′, α(X ′)) : ν ∈ Nn

]
⊆ Dn−1 and u := (∂f/∂Xn)(X ′, α(X ′)),

a unit of Dn−1.
(4) It follows from (Q5) that if f ∈ Dn and f(0) 6= 0, then f is a unit in Dn.

We will define a map hn : Dn \ {0} −→ (N ∪ {∞})νn for n ≥ 1, where νn only
depends on n, such that hn(f) = (0, . . . , 0) implies that f is normal. (To simplify
notation, we usually write 0 in place of (0, . . . , 0).) Equipping (N∪{∞})νn with the
lexicographic ordering, we could say that hn(f) measures “how far from normal” f
is. More precisely, we prove the following.

Theorem 2.5. Let n ≥ 1 and f ∈ Dn be nonzero.

(1) If hn(f) = 0, then f is normal.
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(2) If hn(f) > 0, then there is an admissible substitution τ such that hn(g) <
hn(f) for all g ∈ τf .

We prove the theorem by induction on n ≥ 1; since every nonzero f ∈ D1 is
normal, we can take ν1 := 1 and h1(f) := 0 for all nonzero f ∈ D1. So we assume
for the remainder of this section that n > 1 and that h1, . . . ,hn−1 are defined and
have the desired properties.

For nonzero f ∈ Dn we let

Ff := {(h, g) : h ∈ Dn−1, g ∈ Dn and f(X) = h(X ′) · g(X)} ,
and we define

ordn(f) := min {ordXn g(0, Xn) : (h, g) ∈ Ff for some h ∈ Dn−1} ;

so ordn(f) ∈ N∪{∞}. By Remark 2.4(4), any nonzero f ∈ Dn with ordn(f) = 0 is
of the form h ·U with h ∈ Dn−1 and U ∈ Dn a unit. Thus, the main idea is to lower
ordn(f) until it reaches 0. To do so, we proceed in several steps (Steps 1 through
4 below); for m = 1, 2, 3, 4, we define in Step m a property Pm of f and a tuple
im(f) ∈ (N∪{∞})µm (where µm only depends on m and n and each (N∪{∞})µm is
considered with the corresponding lexicographic ordering) to measure “how far f is
from having property Pm”. In turn, properties P1, . . . , P4 express (with increasing
accuracy) how far f is from the situation where we can lower ordn(f) with a blow-up
substitution.

First, our definition of im(f) will imply that for any nonzero f ∈ Dn,

(2.1) ordn(f) = 0 =⇒ i1(f) = i3(f) = i4(f) = 0 and i2(f) = hn−1(h),

where hn−1(h) is minimal among all h ∈ Dn−1 for which there is a unit U(X) ∈ Dn
such that (h, U) ∈ Ff .

Second, we prove

Proposition 2.6. Let f ∈ Dn be nonzero such that 0 < ordn(f) < ∞ and m ∈
{1, 2, 3}.

(1) If i1(f) = · · · = im(f) = 0, then f has property Pm.
(2) If i1(f) = · · · = im−1(f) = 0 and im(f) > 0, there is an admissible

substitution τ such that for all φ ∈ τf , we have ordn(φ) ≤ ordn(f),
i1(φ) = · · · = im−1(φ) = 0 and im(φ) < im(f).

Third, similar to the arguments presented in Section 1, we prove

Proposition 2.7. Let f ∈ Dn be nonzero such that f is not normal and 0 <
ordn(f) < ∞. If i1(f) = i2(f) = i3(f) = 0, there is a blow-up substitution τ such
that for every φ ∈ τf ,

(1) either ordn(φ) < ordn(f)
(2) or i1(φ) = i2(φ) = i3(φ) = 0, ordn(φ) = ordn(f) and i4(φ) < i4(f).

Finally, we define for nonzero f ∈ Dn,

hn(f) :=
(

ordn(f), i1(f), . . . , i4(f)
)
.

Assuming (2.1) and Propositions 2.6 and 2.7, we finish the proof of Theorem 2.5
as follows. Note that if f ∈ Dn \ {0} is such that ordn(f) =∞, there is a c ∈ Rn−1

such that ordn(ln,cf) < ∞; so we assume that ordn(f) < ∞. By Propositions 2.6
and 2.7, we may then even assume that ordn(f) = 0, that is, f(X) = h(X ′)U(X)
with h ∈ Dn−1, U ∈ Dn a unit and hn−1(h) minimal. Then by (2.1), we have
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hn(f) = (0, hn−1(h), 0, 0); thus, if hn(f) = 0, then hn−1(h) = 0 and f is normal
by the inductive hypothesis, so we assume that hn(f) 6= 0. Again by the inductive
hypothesis, there is an admissible substitution τ (in the variables X ′) such that
hn−1(g) < hn−1(h) for all g ∈ τh. On the other hand, since every φ ∈ τf is of the
form gW for some g ∈ τh and W ∈ τU , it follows from Remark 2.4(1) and (2.1)
that hn(φ) < hn(f) for all φ ∈ τf . This then finishes the proof of Theorem 2.5.

Therefore, it remains to prove Propositions 2.6 and 2.7 and verify (2.1).

Step 1. A nonzero f ∈ Dn has property P1 if d := ordn(f) < ∞ and there are
(h, g) ∈ Ff and K ⊆ {0, . . . , d− 2} such that

(∗) g(X) = Xd
nU(X) +

∑
k∈K gk(X ′)Xk

n , with each gk(X ′) ∈ Dn−1 \ {0} a
nonunit and U(X) ∈ Dn a unit.

(Note that there is no term of degree d − 1 in Xn.) For nonzero g ∈ Dn we put
i01(g) := 0 if g is of the form (∗) for some d ∈ N and i01(g) := 1 otherwise. Then for
nonzero f ∈ Dn we put

i1(f) := min
{

i01(g) : (h, g) ∈ Ff for some h ∈ Dn−1

and ordXn g(0, Xn) = ordn(f)
}
.

Note that i1(f) = 0 if ordn(f) = 0, as required for (2.1).

Proof of Proposition 2.6 for m = 1. Let f ∈ Dn be such that ordn(f) = d < ∞,
and let (h, g) ∈ Ff be such that ordXn g(0, Xn) = d. If d = 0, there is nothing to
prove, so we assume that d > 0. Considering g(X) as a series in Dn+1, we see by
a formal Taylor expansion in powers of Xn − Xn+1 around Xn+1 that there is a
series U(X,Xn+1) ∈ Dn+1 such that

g(X) = (Xn −Xn+1)dU(X,Xn+1) +
d−1∑
k=0

∂kg

∂Xk
n

(X ′, Xn+1)
(Xn −Xn+1)k

k!
.

Since ordXn g(0, Xn) = d, it follows that (∂kg/∂Xk
n)(0) = 0 for all k < d, while

(∂dg/∂Xd
n)(0) 6= 0; in particular, U is a unit. By assumption (Q5) there exists

a = a(g) ∈ Dn−1 such that a(0) = 0 and (∂d−1g/∂Xd−1
n )(X ′, a(X ′)) = 0. Eval-

uating g(X) at Xn+1 = a(X ′) (a procedure corresponding to the Tschirnhausen
transformation (see [1, 2])) gives

g(X) = (Xn − a(X ′))dU(X, a(X ′)) +
d−2∑
k=0

∂kg

∂Xk
n

(X ′, a(X ′))
(Xn − a(X ′))k

k!
.

By Remark 2.4(3), we have U(X, a(X ′)) ∈ Dn, while ordn(taf) = ordn(f) and
i1(taf) = 0. �

Step 2. A nonzero f ∈ Dn has property P2 if d := ordn(f) < ∞ and there are
(h, g) ∈ Ff and K ⊆ {0, . . . , d− 2} such that

(∗∗) g satisfies (∗), and h and the set
{
g
d!/(d−k)
k : k ∈ K

}
are normal.

Let f ∈ Dn be nonzero. If d := ordn(f) = ∞, we put Ff(P1) := ∅, and if
d < ∞, we let Ff (P1) be the set of all (h, g) ∈ Ff for which (∗) holds. Also, if f
has property P1 and (h, g) ∈ Ff (P1), we let g̃ ∈ Dn−1 be the product of h with all
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g
d!/(d−k)
k , k ∈ K, and all nonzero gd!/(d−k)

k − gd!/(d−l)
l with k, l ∈ K such that k < l

(where K and the gk are associated to g as in (∗)). In this situation we define

i2(f) := min {hn−1(g̃) : (h, g) ∈ Ff(P1)} .

(If f ∈ Dn \ {0} does not have property P1, we set i2(f) := ∞.) Note that if
ordn(f) = 0, there is an h(X ′) ∈ Dn−1 such that (h, U) ∈ Ff for some unit U(X) ∈
Dn and hn−1(h) is minimal. Thus g̃ = h in this situation, so i2(f) = hn−1(h), as
required for (2.1).

Proof of Proposition 2.6 for m = 2. Part (1) is immediate, so let f ∈ Dn be nonzero
such that i1(f) = 0 and i2(f) > 0. Let (h, g) ∈ Ff (P1) be such that i2(f) = hn−1(g̃).
By the inductive hypothesis, there is an admissible substitution τ (in the variables
X ′) such that hn−1(θ) < hn−1(g̃) for all θ ∈ τ g̃. Arguing as in the proof of Theo-
rem 2.5 above, we see that ordn(φ) ≤ ordn(f), i1(φ) = 0 and i2(φ) < i2(f) for all
φ ∈ τf . �

Remark 2.8. If f ∈ Dn has property P2, there are unique α = αf ∈ Nn−1 and
g = gf ∈ Dn such that d := ordn(f) = ordXn g(0, Xn) <∞ and

(
(X ′)α, g

)
belongs

to Ff and satisfies (∗∗). If, in addition, the corresponding K = Kf ⊆ {0, . . . , d−2}
is empty, then f is normal. On the other hand, if K 6= ∅, then for each k ∈ K,
there are rk = (rk,1, . . . , rk,n−1) ∈ Nn−1 and a unit Uk ∈ Dn−1 such that gk =
(X ′)rkUk(X ′). Moreover, for every integer p > 0 and every i ∈ {1, . . . , n − 1},
the set

{
(X ′)r

i
k/(d−k) : k ∈ K

}
of monomials (with possibly rational exponents)

is totally ordered by divisibility, where rik = (rik,1, . . . , r
i
k,n−1), rik,i := prk,i and

rik,j := rk,j for j 6= i.

Step 3. Let f ∈ Dn have property P2, and let d, α, K and g, etc., be as in Remark
2.8. In this situation, we say that f has property P3 if rk,i is divisible by d − k
for all k and i. Thus we put

B(f) := {i < n : rk,i is not divisible by d− k for some k ∈ K}

and define i3(f) := |B(f)|. (If f ∈ Dn \ {0} does not have property P2, we set
i3(f) := ∞.) Note that if K = ∅ (and hence in particular if ordn(f) = 0), then
B(f) = ∅, so i3(f) = 0 as well, as required for (2.1).

Proof of Proposition 2.6 for m = 3. Let f ∈ Dn be such that i1(f) = i2(f) = 0 and
i3(f) > 0, and let B(f) be as above. Choose any i ∈ B(f) and put τ := {p+

i,d!, p
−
i,d!}.

Then for all φ ∈ τf we have ordn(φ) = ordn(f), i1(f) = i2(φ) = 0 (by Remarks
2.4(1) and 2.8 with p = d!) and i3(φ) < i3(f). �

Remark 2.9. Let q ≥ 0 be an integer. In the situation of the previous proof, note
that τ(Xq

i f) = Xq·d!
i τf . Hence for all φ ∈ τ(Xq

i f) we have ordn(φ) = ordn(f),
i1(φ) = i2(φ) = 0 and i3(φ) < i3(f).

Step 4. Let f ∈ Dn have property P3; we continue using the corresponding notation
of Step 3. If K 6= ∅ (i.e., f is not already normal), we now want to use a blow-up
substitution to lower ordn(f). However, this only works if for some k ∈ K, we
have rk,i = d − k for some i < n and rk,j = 0 for all j 6= i. Thus, we say that f
has property P4 if either K = ∅ or there is such a k ∈ K, and we define i4(f) as
follows: if K 6= ∅, we let l = l(f) ∈ K be maximal such that rl/(d− l) ≤ rk/(d− k)
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for all k ∈ K, and let j = j(f) < n be maximal such that rl,j 6= 0. Then we define

i4(f) :=

{
(j, rl,j) if K 6= ∅,
(0, 0) otherwise.

(We put i4(φ) := (∞,∞) if f ∈ Dn \ {0} does not have property P3.) Note that
i4(f) 6= 0 if K 6= ∅, while i4(f) = 0 if ordn(f) = 0.

The proof of Proposition 2.7 is given by the following three lemmas (generalizing
the observations in Section 1). We fix a nonzero f ∈ Dn such that f has property
P3 and K 6= ∅; in particular, ordn(f) > 0 and i4(f) > (0, 0). Below we continue
using the notation associated to f in Remark 2.8 and Step 3. We let τ := bj,n with
j = j(f); the three lemmas below actually show that Proposition 2.7 follows for
this τ .

Lemma 2.10. Let λ ∈ R \ {0}. Then ordn
(

bj,nλ f
)
< ordn(f); in fact, for every

integer q ≥ 0 we have ordn
(

bj,nλ (Xq
j f)
)
< ordn(f).

Proof. Since

bj,nλ g(X) = Xd
j (λ+Xn)d bj,nλ U(X) +

∑
k∈K

(X ′)rkUk(X ′)Xk
j (λ+Xn)k,

and since rk,j/(d − k) ≥ rl,j/(d − l) > 0 for each k ∈ K, we can factor out Xd
j .

Thus for every integer q ≥ 0, we have bj,nλ (Xq
j f(X)) = (X ′)αXq+d

j h(X) with

h(X) = (λ+Xn)d bj,nλ U(X) +
∑
k∈K

(X ′)r
′
kUk(X ′)(λ+ Xn)k,

where r′k,j := rk,j − (d − k) and r′k,i := rk,i if i 6= j, for all k ∈ K. Since the only
term of h that contributes to the coefficient of Xd−1

n is bj,nλ U(X)(λ + Xn)d, and
since bj,nλ U(0, . . . , 0, Xn) = U(0), it follows that ordn

(
bj,nλ (Xq

j f)
)
≤ d− 1. �

Remark. A careful examination of the previous proof actually shows the following
(which we do not need here): for all but finitely many λ ∈ R the series bj,nλ f is
normal.

Lemma 2.11. The series bj,n∞ f is normal. In fact, for every integer q ≥ 0 the
series bj,n∞ (Xq

nf) is normal.

Proof. We have

bj,n∞ g(X) = bj,n∞ U(X)Xd
n +

∑
k∈K

(X ′)rk bj,n∞ Uk(X ′)Xk+rk,j
n .

Since rk,j/(d − k) ≥ rl,j/(d − l) > 0 for each k, we can factor out Xd
n. Thus for

every integer q ≥ 0, we have bj,n∞ (Xq
nf(X)) = (X ′)αXq+d

n h(X) with

h(X) = bj,n∞ U(X) +
∑
k∈K

(X ′)rk bj,n∞ Uk(X ′)Xk+rk,j−d
n .

Since rk > (0, . . . , 0) for each k ∈ K, it follows that h is a unit. �

Lemma 2.12. Let q ≥ 0 be an integer and write φq := bj,n0 (Xq
j f). Then either

ordn(φq) < ordn(f), or ordn(φq) = ordn(f) and i4(φq) < i4(f).
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Proof. Note that

bj,n0 g(X) = bj,n0 U(X)Xd
jX

d
n +

∑
k∈K

(X ′)rkUk(X ′)Xk
jX

k
n.

As in the proof of Lemma 2.10, for any positive integer q ≥ 0 we obtain that
bj,n0 (Xq

j f(X)) = (X ′)αXq+d
j h(X), where

h(X) = bj,n0 U(X)Xd
n +

∑
k∈K

(X ′)r
′
kUk(X ′)Xk

n

and r′k,j := rk,j − (d − k) and r′k,i := rk,i if i 6= j, for all k ∈ K; in particular,
ordn(bj,n0 (Xq

j f(X))) = ordn(bj,n0 f(X)) ≤ ordn(f). Since rk,j is divisible by d− k,
we see that {(X ′)r′k/(d−k) : k ∈ K} is again linearly ordered by divisibility and
that r′l/(d− l) ≤ r′k/(d− k) for all k ∈ K.

Assume now that ordn(h) = ordn(f); then r′l > (0, . . . , 0). If r′l,j 6= 0, then
j(h) = j(f), and since r′l,j < rl,j , it follows that i4(bj,n0 (Xq

j f(X))) < i4(f) in
this case. On the other hand, if r′l,j = 0, then j(h) < j(f), and again we obtain
i4(bj,n0 (Xq

j f(X))) < i4(f). �

Finally, for later use we record the following consequences of the algorithm. Let
f ∈ Dn be nonzero such that hn(f) > 0, and let τ be an admissible substitution as
obtained from the algorithm such that hn(φ) < hn(f) for all φ ∈ τf .

Lemma 2.13. (1) Assume there are i ∈ {1, . . . , n} and k ∈ N such that τ =
{p+
i,k, p

−
i,k}. Then i < n, and for any integer q ≥ 0 and φ ∈ τ(Xq

i · f) we
have hn(φ) < hn(f).

(2) Assume there are 1 ≤ i < j ≤ n such that τ = bi,j. Then for every integer
q ≥ 0 we have hn(bi,jλ (Xq

i ·f)) < hn(f) for all λ ∈ R, and hn(bi,j∞ (Xq
j ·f)) <

hn(f).

Proof. (1) By induction on n; if n = 1, then hn(g) = 0 for all nonzero g ∈ Dn, so
there is nothing to prove. We therefore assume that n > 1 and that the lemma
holds for lower values of n. Let q ≥ 0 be an integer; we now distinguish several
cases (depending on the stages of the algorithm). Since no power substitution is
used to reduce to the case ordn(f) < ∞ or to lower i1(f), we may assume that
ordn(f) <∞ and i1(f) = 0.

Next we assume that i2(f) > 0. We let (h, g) ∈ Ff (P1) be such that hn−1(g̃) =
i2(f), where g̃ is associated to f as in Step 2. Assume also that τ is obtained
from Step 2 such that i2(φ) < i2(f) for all φ ∈ τf . Then τ is a substitution in
the variables X ′ such that hn−1(φ) < hn−1(g̃) for all φ ∈ τ(g̃). By the inductive
hypothesis i < n−1 and hn−1(φ) < hn−1(g̃) for all φ ∈ τ(Xq

i ·g̃). On the other hand,
the pair (Xq

i h, g) belongs to FXqi ·f , so that hn(φ) < hn(f) for all φ ∈ τ(Xq
i · f).

So we may also assume that i2(f) = 0. If i3(f) > 0, then i < n and hn(φ) < hn(f)
for every φ ∈ τ(Xq

i f) by Step 4 and Remark 2.9. We therefore may assume that
i3(f) = 0 as well. Since in this case we use a blow-up substitution to lower hn(f),
part (1) is proved.

The proof of part (2) is similar, using the corresponding observations stated in
Lemmas 2.10, 2.11 and 2.12. �
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3. C-sets

All manifolds, maps, etc., are from now on assumed to be of class C∞, unless oth-
erwise indicated; in addition, submanifolds of Euclidean space are always assumed
to be embedded. If n > 0 and x = (x1, . . . , xn), we write x′ = (x1, . . . , xn−1).

Throughout the rest of this paper we fix, for every compact box B = [a1, b1] ×
· · · × [an, bn] with ai < bi for i = 1, . . . , n and n ∈ N, an R-algebra CB of functions
f : B −→ R such that the following hold:

(C1) CB contains the functions (x1, . . . , xn) 7→ xi : B −→ R, and for every
f ∈ CB, the restriction of f to int(B) is C∞;

(C2) if B′ ⊆ Rm is a compact box and g1, . . . , gn ∈ CB′ are such that g(B′) ⊆
B, where g = (g1, . . . , gn), then for every f ∈ CB the function y 7→
f(g1(y), . . . , gn(y)) : B′ −→ R belongs to CB′ ;

(C3) for every compact box B′ ⊆ B we have f
∣∣B′ ∈ CB′ for all f ∈ CB, and

for every f ∈ CB there is a compact box B′ ⊆ Rn and g ∈ CB′ such that
B ⊆ int(B′) and g

∣∣B = f .

Note that (C1) and (C3) imply in particular that every f ∈ CB extends to a
C∞ function f : U −→ R for some open neighborhood U of B (depending on f).
Therefore, for each i = 1, . . . , n we denote the restriction of ∂f/∂xi to B by ∂f/∂xi.
With this notation, we also assume for every compact box B ⊆ Rn that

(C4) ∂f/∂xi ∈ CB for every f ∈ CB and each i = 1, . . . , n.

Let r = (r1, . . . , rn) ∈ (0,∞)n be a polyradius, and put

Ir := (−r1, r1)× · · · × (−rn, rn) and Ir := cl(Ir).

(If ε > 0, we simply write ε for the polyradius (ε, . . . , ε).) From now on, we write
Cn,r := CIr . We denote by Cn the collection of all germs at the origin of the
functions in

⋃
r∈(0,∞)n Cn,r. Note that each Cn is an R-algebra with respect to the

usual addition and multiplication of germs at 0. Finally, we let ̂ : Cn −→ R[[X ]] be
the map that sends each f ∈ Cn to its Taylor series f̂ at the origin, and we denote
the image of ̂ in R[[X ]] by Ĉn.

In addition to (C1)–(C4) above, we make the following assumptions: for all
n ≥ 1, we have

(C5) ̂: Cn −→ Ĉn is an R-algebra isomorphism (quasianalyticity);
(C6) if n > 1 and f ∈ Cn is such that f(0) = 0 and (∂f/∂xn)(0) 6= 0, there is an

α ∈ Cn−1 with α(0) = 0 such that f(x′, α(x′)) = 0;
(C7) if f ∈ Cn and i ≤ n are such that f̂(X) = XiG(X) for some G ∈ R[[X ]],

then f = xig for some g ∈ Cn such that G = ĝ.

It follows from these assumptions that the collection Ĉ := (Ĉn)n∈N satisfies (Q1)–
(Q5).

Examples 3.1. (1) Let M = (M0,M1, . . . ) be a strongly log-convex sequence
satisfying (QA). Then, as discussed in the introduction and the appendix, the
classes CB(M), with B ⊆ Rn a compact box and n ∈ N, satisfy (C1)–(C7).

(2) Let R be a polynomially bounded o-minimal expansion of the real field. For
every compact box B ⊆ Rn, let CB be the collection of all functions on B that are
the restriction to B of some definable C∞ function defined on an open neighborhood
of B. Then by [16], the classes CB satisfy (C1)–(C7).



QUASIANALYTIC DENJOY-CARLEMAN CLASSES AND O-MINIMALITY 763

Definition 3.2. A set A ⊆ Rn is called a basic C-set if there are r ∈ (0,∞)n and
f, g1, . . . , gk ∈ Cn,r such that

A = {x ∈ Ir : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0} .

A finite union of basic C-sets is called a C-set. We call M ⊆ Rn a C-manifold if
there is an r ∈ (0,∞)n such that

(1) M is a basic C-set contained in Ir, and
(2) there are f1, . . . , fk ∈ Cn,r such that M is a submanifold of Ir of di-

mension n − k on which f1, . . . , fk vanish identically, and the gradients
∇f1(z), . . . ,∇fk(z) are linearly independent at each z ∈M .

As in [8], we say that a set S ⊆ Rn has dimension if S is a countable union of
manifolds of class C1, and in that case we put

dim(S) :=

{
max{dim(M) : M ⊆ S is a C1 manifold} if S 6= ∅,
−∞ otherwise.

Remarks 3.3. (1) If S =
⋃
i∈N Si and each Si has dimension, then S has dimension

and dim(S) = max{dim(Si) : i ∈ N}. (This follows by an elementary Baire category
argument.)

(2) If M is a manifold, then dim(M) in the sense of the previous definition agrees
with the usual manifold dimension.

Given m ≤ n, we let Πn
m : Rn −→ Rm be the projection map given by

Πn
m(x1, . . . , xn) = (x1, . . . , xm). More generally, given an injective λ : {1, . . . ,m} →
{1, . . . , n}, we let Πn

λ : Rn −→ Rm be the projection Πn
λ(x) := (xλ(1), . . . , xλ(m)).

We will simply write Πm for Πn
m and Πλ for Πn

λ if n is clear from context.
For r ∈ (0,∞)n, f = (f1, . . . , fµ) ∈ (Cn,r)µ, S ⊆ Ir and a sign condition σ ∈

{−1, 0, 1}µ we put

BS(f, σ) := {x ∈ S : sgn f1(x) = σ1, . . . , sgn fµ(x) = σµ}.

Definition 3.4. Let r ∈ (0,∞)n. A set M ⊆ Ir is C-trivial if one of the following
holds:

(1) M = BIr
(
(x1, . . . , xn), σ

)
for some sign condition σ ∈ {−1, 0, 1}n, or

(2) there are a permutation λ of {1, . . . , n}, a C-trivial N ⊆ Is and a g ∈
Cn−1,s, where s = (rλ(1), . . . , rλ(n−1)), such that g(Is) ⊆ (−rλ(n), rλ(n)) and
Πλ(M) = gr(g

∣∣N).

Remarks 3.5. Let r ∈ (0,∞)n and M ⊆ Ir be C-trivial. Using (C1)–(C4), the
following observations are obtained by induction on n:

(1) M is a bounded and connected C-manifold, and frM := cl(M) \M is a
C-set, has dimension, and dim(frM) < dim(M).

(2) For every z ∈ frM , there are δ > 0 and γ = (γ1, . . . , γn) ∈ (C1,δ)n such
that γ(t) ∈M for every t ∈ (0, δ) and γ(0) = z.

Definition 3.6. Let r ∈ (0,∞)n and f = (f1, . . . , fµ) ∈ Cµn,r. We denote by R〈f〉
the expansion of the real field generated by the functions

x 7→
{
∂αfν
∂xα (x) if x ∈ Ir,

0 otherwise,
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where ν = 1, . . . , µ and α ∈ Nn. Also let l,m ∈ N, s ∈ (0,∞)m and Ai ⊆ Is a basic
C-set for i = 1, . . . , l, say

Ai =
{
y ∈ Is : hi(y) = 0, gi,1(y) > 0, . . . , gi,k(i)(y) > 0

}
with hi, gi,j ∈ Cm,s for i = 1, . . . , l and j = 1, . . . , k(i). We say that the C-set
A :=

⋃l
i=1Ai is ∆-definable from f if for every β ∈ Nm, the functions ∂βhi/∂yβ

and ∂βgi,j/∂y
β, for all i ∈ {1, . . . , l} and all j ∈ {1, . . . , k(i)}, are quantifier-free

definable in R〈f〉.

Example 3.7. The previous definition will be relevant in situations similar to the
following. Let r ∈ (0,∞)n and f ∈ Cn,r be such that f(0) = 0 and ∂f/∂xn(0) 6= 0.
Then there is an s ∈ (0,∞)n and an α ∈ Cn−1,s′ , where s′ = (s1, . . . , sn−1), such
that α(0) = 0 and for all x ∈ Is,

f(x) = 0 if and only if xn = α(x′).

It follows from Remark 2.4(3) that for any ε > 0, after suitably shrinking s, the set{
(x, t) ∈ I(s,ε) : t = xn + α(x′)

}
is ∆-definable from f . If, in addition, B ⊆ Is is a

C-set that is ∆-definable from f , then the set{
(x, t) ∈ I(s,ε) : x ∈ B and t = xn + α(x′)

}
is also ∆-definable from f .

Proposition 3.8. Let r ∈ (0,∞)n and f ∈ (Cn,r)µ. Then there is a neighborhood
W ⊆ Ir of 0 with the following property:

(∗) for every sign condition σ ∈ {−1, 0, 1}µ there is an l ∈ N, and for each k =
1, . . . , l there are nk ≥ n, rk ∈ (0,∞)nk and C-trivial manifolds Nk ⊆ Irk
that are ∆-definable from f , such that

BW (f, σ) = Πn(N1) ∪ · · · ∪Πn(Nl)

and for each k, the set Πn(Nk) is a manifold and Πn

∣∣Nk : Nk −→ Πn(Nk)
is a diffeomorphism.

Proof. We may clearly assume that fν 6= 0 for each ν = 1, . . . , µ. Let g := f1 · · · fµ;
then g 6= 0, so by the quasianalyticity of Cn we have ĝ 6= 0.

We proceed by induction on the pair (n, hn(ĝ)), where hn is the function mea-
suring nonnormality of power series as introduced in Section 2. If hn(ĝ) = 0, the
proposition follows from (C7), so we assume that n > 1, hn(ĝ) > 0 and the propo-
sition holds for lower values of (n, hn(ĝ)). By Theorem 2.5, there is an admissible
substitution τ such that hn(φ) < hn(ĝ) for all φ ∈ τ ĝ.

Note by (C5) that each ξ ∈ τ corresponds to a unique germ hξ ∈ (Cn)n, and that
ĥ ◦ hξ = ξ ĥ for all h ∈ Cn. Thus to simplify notation below, we do not distinguish
any longer between h ∈ Cn and ĥ ∈ Ĉn, or between ξ and hξ.

Below Cn,r is viewed as a subset of Cn by identifying each g ∈ Cn,r with its germ
in Cn. Correspondingly, given g = (g1, . . . , gk) ∈ (Cn)k, we say that r ∈ (0,∞)n is
g-small if gi ∈ Cn,r for i = 1, . . . , k.

Case 1. τ = {tα} for some α ∈ Ci−1 with 1 < i ≤ n and α(0) = 0. Let s ∈ (0,∞)n

be both (tαf)-small and tα-small and such that tα(Is) ⊆ Ir . By the inductive
hypothesis, there is a neighborhood V ⊆ Is of 0 such that (∗) holds with tαf , s and
V in place of f , r and W . Then W = tα(V ) is a neighborhood of 0, and we claim
that (∗) holds with this W .
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To see this, we let σ ∈ {−1, 0, 1}µ. Let Mk ⊆ Rmk for k = 1, . . . , p be the C-
trivial manifolds obtained for this σ from the inductive hypothesis applied to tαf ;
in particular, each Mk is ∆-definable from tαf . By Remark 2.4(3), it follows that
each Mk is ∆-definable from f . For each k we put

Nk := {(x<i, t, x>i, xi) : x ∈Mk and t = xi + α(x<i)} ,
where x<i := (x1, . . . , xi−1) and x>i := (xi+1, . . . , xmk). Then by Example 3.7, each
Nk is a C-trivial manifold that is ∆-definable from f , andBW (f, σ) =

⋃p
k=1 Πn(Nk).

Moreover, since tα
∣∣Is : Is −→ tα(Is) is a diffeomorphism, it follows that Πn(Nk) =

tα(Πn(Mk)) is a manifold and Πn

∣∣Nk : Nk −→ Πn(Nk) a diffeomorphism, as re-
quired.

Case 2. τ = {li,c} for some 1 < i ≤ n and c ∈ Ri−1. In this case, the proof is
similar to the proof of Case 1. Here and in Cases 3 and 4 below, the ∆-definability
of the manifolds in question follows from the inductive hypothesis because τ is
semialgebraic.

Case 3. There are i ∈ {1, . . . , n} and d > 1 such that τ = {p+
i,d, p

−
i,d}; below we

write p+ and p− in place of p+
i,d and p−i,d. Then by Lemma 2.13(1), i < n and

hn(p+(Xi · g)) < hn(g) and hn(p−(Xi · g)) < hn(g). On the other hand, since for
any set S ⊆ Rn and any σ ∈ {−1, 0, 1}µ,

BS(f, σ) =
⋃

χ∈{−1,0,1}
BS((f1, . . . , fµ, Xi), σ̂χ),

where σ̂χ(i) = σ(i) if i ≤ µ and σ̂χ(µ+1) = χ for each χ, we may as well assume
that fµ(X) = Xi. Below we write Rni,∗ = {x ∈ Rn : xi ∗ 0} for ∗ ∈ {<, 0, >, 6=}.

Let s ∈ (0,∞)n be both (p+f)-small and (p−f)-small such that p+(Is) ⊆ Ir and
p−(Is) ⊆ Ir. By the inductive hypothesis, there are neighborhoods V +, V − ⊆ Is of
0 such that (∗) holds with p∗f , s and V ∗ in place of f , r and W (where ∗ ∈ {+,−}).
Also by the inductive hypothesis, (∗) holds with f

∣∣Rni,0, s and a neighborhood V 0 ⊆
Rni,0 of 0 in place of f , r and W . Then W1 := p+(V + ∩Rni,>)∪ V 0 ∪ p−(V − ∩Rni,<)
and W2 := p+(V + \Rni, 6=)∪ V0 are neighborhoods of 0, and we claim that (∗) holds
with W1 (resp. W2) in place of W if d is even (resp. odd).

To see this, we let σ ∈ {−1, 0, 1}µ; if σ(µ) = 0, then BW (f, σ) = BV 0(f, σ) and
the claim follows. Assume now that σ(µ) = 1 and d is even; the proof for σ(µ) = −1
or d odd is similar. Then BV +(p+f, σ) ⊆ Rni, 6=, so because C-trivial manifolds are
connected and Rni, 6= has two connected components, (∗) also holds with p+f , s and
V + ∩ Rni,> and with p−f , s and V − ∩ Rni,< in place of f , r and W . Since p+ ∈ Cn
and p+

∣∣Rni,> is a diffeomorphism of Rni,> onto itself and, similarly, p− ∈ Cn and
p−
∣∣Rni,< is a diffeomorphism of Rni,< onto itself, we finish with a similar argument

as in the proof of Case 1.

Case 4. τ = bi,j for some 1 ≤ i < j ≤ n; below we write b instead of bi,j and put
Z := {xi = xj = 0}. (Note that Z is the center of the blowing-up whose charts are
represented by b.)

First, we fix an arbitrary λ ∈ R and let sλ ∈ (0,∞)n be (bλ f)-small such that
bλ(Isλ ) ⊆ Ir. Then by Lemma 2.13(2), hn(bλ(Xi · g)) < hn(g). Thus by the
inductive hypothesis, there is a neighborhood Vλ ⊆ Iδλ of 0 such that (∗) holds
with (bλ f, bλ(Xi)), sλ and Vλ in place of f , r and W . Since bλ(Xi) = Xi, bλ is
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continuous and bλ
∣∣Rni, 6= is a diffeomorphism of Rni, 6= onto itself, it follows by a similar

argument as in Case 3 that (∗) holds with f , sλ andWλ := bλ(Vλ)\Rni,0 = bλ(Vλ)\Z
in place of f , r and W . (Of course, Wλ is not a neighborhood of 0.)

Next, let s∞ ∈ (0,∞)n be (b∞ f)-small such that b∞(Is∞) ⊆ Ir. Again by
Lemma 2.13(2), hn(b∞(Xj · g)) < hn(g). Hence, just as for λ ∈ R, there is a
neighborhood V∞ ⊆ Is∞ of 0 such that (∗) holds with f , s∞ and W∞ := b∞(V∞)\Z
in place of f , r and W .

Finally, by the inductive hypothesis there is a neighborhood W ′ ⊆ Z of 0 such
that (∗) holds with f

∣∣Z and W ′ in place of f and W . Now note that there is a
finite set S ⊆ Z such that W := W ′ ∪Wλ0 ∪Wλ∞ ∪

⋃
s∈SWλs is a neighourhood

of 0.

�

4. C-semianalytic sets

Definition 4.1. Let A ⊆ Rn. The set A is called C-semianalytic at a ∈ Rn if
there is an r ∈ (0,∞)n such that (A− a)∩ Ir is a C-set. A is C-semianalytic if A
is C-semianalytic at every point a ∈ Rn. If moreover A is a manifold, then we call
A a C-semianalytic manifold.

Remarks. (1) If A,B ⊆ Rn are C-semianalytic at a, then so are A ∪B, A ∩B and
A \B.

(2) If A ⊆ Rn is C-semianalytic, then by (C2) the set Eλ(A) is C-semianalytic for
each λ ∈ (R \ {0})n , where Eλ : Rn −→ Rn is given by Eλ(x) = (λ1x1, . . . , λnxn).

(3) By (C1) and (C2), every C-set is C-semianalytic.

To obtain the strengthening of Theorem 1 mentioned in the introduction, we
need the following.

Definition 4.2. Let A ⊆ Rn be bounded and C-semianalytic. Then there are
a1, . . . , al ∈ Rn and r1, . . . , rl ∈ (0,∞)n such that A ⊆ (Ir1 + a1) ∪ · · · ∪ (Irl + al)
and (A − ai) ∩ Iri is a C-set for each i = 1, . . . , l. Also let sj ∈ (0,∞)mj and
fj ∈ Cµjmj ,sj , for j = 1, . . . , k. We say that A is ∆-definable from {f1, . . . , fk} if
for each i ∈ {1, . . . , l}, there is a j ∈ {1, . . . , k} such that (A−ai)∩Iri is ∆-definable
from fj.

Assume in addition that for i ∈ {1, . . . , l},

(A− ai) ∩ Iri =
p(i)⋃
j=1

{
x ∈ Iri : hi,j(x) = 0, gi,j,1(x) > 0, . . . , gi,j,k(i,j) > 0

}
with hi,j , gi,j,1, . . . , gi,j,k(i,j) ∈ Cn,ri, and let B ⊆ Rp be C-semianalytic. Then B is
called ∆-definable from A if B is ∆-definable from the collection{

(hi,1, gi,1,1, . . . , gi,p(i),k(i,p(i))) : i = 1, . . . , l
}
.

Remark 4.3. Let A, B and C be C-semianalytic, such that B is ∆-definable from
A and C is ∆-definable from B. Then C is ∆-definable from A.

A C-semianalytic manifold M ⊆ Rn is called trivial if M = N + a for some
C-trivial manifold N ⊆ Rn and some a ∈ Rn. (Thus any trivial C-semianalytic
manifold is bounded and connected.)
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Corollary 4.4. Let A ⊆ Rn be bounded and C-semianalytic. Then there are ni ≥ n
and trivial C-semianalytic manifolds Ni ⊆ Rni for i = 1, . . . , k, each ∆-definable
from A, such that

A = Πn(N1) ∪ · · · ∪Πn(Nk),
and for each i, the set Πn(Ni) is a manifold and Πn

∣∣Ni : Ni −→ Πn(Ni) is a
diffeomorphism. In particular, A has dimension.

Proof. By the definition of “C-semianalytic” and Proposition 3.8, the corollary holds
locally at each point of Rn, and hence the boundedness of A implies that it holds
globally. �

Let M ⊆ Rn be a C-manifold of dimension m ≤ n with associated r ∈ (0,∞)n

and f1, . . . , fn−m ∈ Cn,r as in Definition 3.2 (with n −m in place of k). Given a
strictly increasing ι : {1, . . . ,m} −→ {1, . . . , n}, we put

Mι :=
{
x ∈M : Πι

∣∣TxM has rank m
}
.

Then Mι is an open subset of M and is in fact a C-manifold (with same associated
r and f1, . . . , fn−m). Moreover, the assumption on f1, . . . , fn−m implies that

M =
⋃
{Mι : ι : {1, . . . ,m} −→ {1, . . . , n} is strictly increasing } .

Let k ≤ m and ι : {1, . . . ,m} −→ {1, . . . , n} be strictly increasing. We let
m(k) ∈ {0, . . . ,m} be maximal such that ι(m(k)) ≤ k and put ιk := ι

∣∣{1, . . . ,m(k)}
and ιk := ι

∣∣{m(k) + 1, . . . ,m}.
Assume now that M = Mι and that Πk

∣∣M has constant rank m(k). Then by
the rank theorem, each fiber Ma := Π−1

k (a) ∩M over a ∈ Rk is either empty or a
C-manifold of dimension m−m(k), and Πιk

∣∣Ma is an immersion. (To see the latter,
note that for x ∈ Ma the tangent space TxMa is a subspace of TxM of dimension
e := m−m(k) such that Πk(TxMa) = {0}. Let v1, . . . , ve be a basis of TxMa; then
Πι(v1), . . . ,Πι(ve) are linearly independent in Rm and Πιk(v1) = · · · = Πιk(ve) = 0.
Hence Πιk(v1), . . . ,Πιk(ve) are linearly independent in Re.) It follows that if C is
a connected component of Ma, then Πιk(C) is open in Re, which implies (since C
is bounded) that frC 6= ∅ if e ≥ 1.

Lemma 4.5 (Fiber Cutting Lemma). Let n ≥ m > k ≥ 0. Let M ⊆ Rn be a C-
manifold of dimension m. Assume that M = Mι for some fixed strictly increasing
ι : {1, . . . ,m} −→ {1, . . . , n}, and that Πk

∣∣M has constant rank m(k). Then there is
a C-set A ⊆M , ∆-definable from M , such that dim(A) < m and Πk(M) = Πk(A).

Proof. Note that k < m implies m(k) < m. Let r ∈ (0,∞)n be associated to M
as in Definition 3.2 (with n−m in place of k there), and let f, g1, . . . , gk ∈ Cn,r be
such that

M = {x ∈ Ir : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0} .
Let g be the product of all gj, j = 1, . . . , k, and all (xi − ri)

∣∣Ir and (ri − xi)
∣∣Ir,

i = 1, . . . , n. Then g ∈ Cn,r, and g is strictly positive on all of M and identically
zero on frM .

Next, by the paragraph preceding this lemma, for each a ∈ Πk(M) the fiber Ma is
a manifold of dimension m−m(k) > 0, and frC 6= ∅ for each connected component
C of Ma. Therefore, g

∣∣Ma has critical points on each connected component of Ma,
since g is positive on Ma and vanishes identically on frMa. Moreover, since Ma is a
C-manifold, it follows from (C5) and (C6) (by similar arguments as in the situation
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where g is analytic) that the set of critical points of g
∣∣Ma has empty interior in

Ma. Let
A =

{
x ∈M : x is a critical point of g

∣∣Ma, a = Πk(x)
}
.

Then Πk(A) = Πk(M) and A is a C-set, so A has dimension by Corollary 4.4.
Moreover, it follows from the definition of g that A is ∆-definable from M . Since
A has empty interior in M , we have dim(A) < dim(M). �

For any manifold M ⊆ Rn of dimension m and k ≤ m, we define

r(M) := max {rk(Πk|TxM ) : x ∈M} ≤ m.
(We do not explicitly indicate the dependence of r(M) on k, m and n.)

Lemma 4.6. Let M ⊆ Rn be a C-manifold of dimension m and k ≤ m. Then
(∗) there are trivial C-semianalytic manifolds Ni ⊆ Rni , ∆-definable from M

and satisfying dim(Ni) ≤ k and ni ≥ n for i = 1, . . . ,K, and there are
bounded C-semianalytic sets Aj ⊆ Rpj , ∆-definable from M and satisfying
dim(Aj) < m and pj ≥ n for j = 1, . . . , L, such that

Πk(M) = Πk(N1) ∪ · · · ∪Πk(NK) ∪Πk(A1) ∪ · · · ∪Πk(AL),

and for each i there is a strictly increasing ι : {1, . . . ,dim(Ni)} → {1, . . . , k}
such that Πι

∣∣Ni : Ni −→ Rdim(Ni) is an immersion.

Proof. We prove this lemma by induction on r(M) simultaneously for all k,m and
n. The initial case r(M) = 0 is trivial (since then Πk is constant on each component
of M), so we assume r(M) > 0 and that the lemma holds for lower values of r(M).
First, we claim that it suffices to prove (∗) with M̃ := M \

⋃
M in place of M ,

where

M := {Mι : ι : {1, . . . ,m} −→ {1, . . . , n} strictly increasing and m(k) = r(M)} .
To see this, we let Mι ∈ M be such that Mι 6= ∅, and we show that the lemma
holds with Mι in place of M . If k = m, this is trivial. On the other hand, since Mι

is open in M , we have for every x ∈Mι that

r(M) = m(k) ≤ rk
(
Πk

∣∣TxMι

)
≤ r(M).

Hence if k < m, the lemma with Mι in place of M follows from the fiber cutting
lemma, which together with Remark 4.3 proves the claim.

Next, note that for every x ∈ M̃ the rank of Πk

∣∣TxM is less than r(M). Since M̃
is clearly a bounded C-set, we may apply Corollary 4.4 with M̃ in place of A. Denote
by Mν ⊆ Rnν the manifolds obtained from this corollary for M̃ . Since for each ν

the projection Πn

∣∣Mν : Mν −→ Πn(Mν) ⊆ M̃ is a diffeomorphism, it follows that
for each w ∈ Mν and x = Πn(w), we have rk(Πnν

k

∣∣TwMν) ≤ rk(Πk

∣∣TxM) < r(M),
that is, r(Mν) < r(M). Therefore, by the inductive hypothesis, (∗) holds with
each Mν in place of M , which together with Remark 4.3 finishes the proof of the
lemma. �

Proposition 4.7. Let A ⊆ Rn be a bounded C-semianalytic set and k ≤ n. Then
there are trivial C-semianalytic manifolds Ni ⊆ Rni with ni ≥ n for i = 1, . . . , J ,
each ∆-definable from A, such that

Πk(A) = Πk(N1) ∪ · · · ∪Πk(NJ)
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and for each i we have d := dim(Ni) ≤ k, and there is a strictly increasing ι :
{1, . . . , d} −→ {1, . . . , k} such that Πι

∣∣Ni : Ni −→ Rd is an immersion.

Proof. By induction on e := dim(A): if e = 0, then A is finite by Corollary 4.4, so
the theorem is trivial in this case. So we assume e > 0 and that the theorem holds
for lower values of e.

Note first that if there is a bounded C-semianalytic set E ⊆ Rñ for some ñ ≥ n
such that E is ∆-definable from A, A = Πn(E) and the proposition holds with E
and ñ in place of A and n, then by Remark 4.3 the proposition also holds for A and
n. Similarly, if A is a finite union of C-semianalytic sets each ∆-definable from A
and satisfying the proposition in place of A, then again the proposition also holds
for A. By Corollary 4.4 and the inductive hypothesis, reasoning as at the end of
the previous proof and increasing n if necessary, we may therefore reduce to the
case that A is a C-manifold M of dimension e.

Applying Lemma 4.6 to M (with corresponding n and k as above), we let
N1, . . . , NK and A1, . . . , AL be as in (∗) for M . Since for each j = 1, . . . , L we have
dim(Aj) < e, the inductive hypothesis and Remark 4.3 together with the above
imply that we may even reduce to the case where M = Ni for some i ∈ {1, . . . ,K}
(again increasing n if necessary), that is, we may assume that there is a strictly
increasing ι : {1, . . . ,dim(M)} −→ {1, . . . , k} such that Πι

∣∣M is an immersion.
Now we apply Corollary 4.4 again with M in place of A, and we let N (with

corresponding n′ ≥ n) be one of the Ni’s thus obtained. Since Πn

∣∣N : N −→
Πn(N) is a diffeomorphism, Πn(N) ⊆ M and Πι

∣∣M is an immersion, we see that
dim(N) = dim(M) ≤ k and Πn′

ι

∣∣N is an immersion. �

5. O-minimality

For n ∈ N we put, with I = [−1, 1],

Λn := {X ⊆ In : X is C-semianalytic} .

Then the system Λ := (Λn)n∈N satisfies axioms (I)–(III) of [8, Section 2].
Let A ⊆ In. In accordance with [8], we call A a Λ-set if A ∈ Λn; if in addition

A is a manifold, we call A a Λ-manifold. Similarly, A is a sub-Λ-set if there are
m ≥ n and B ∈ Λm such that A = Πn(B); if in addition A is a manifold, then A
is a sub-Λ-manifold.

We recall that A ⊆ In has the Λ-Gabrielov property if for each m ≤ n there
are connected sub-Λ-manifolds Bi ⊆ In+qi , with i = 1, . . . , k and q1, . . . , qk ≥ 0,
such that

Πm(A) = Πm(B1) ∪ · · · ∪Πm(Bk)

and for each i ∈ {1, . . . , k} we have

(G1) frBi is contained in a closed sub-Λ-set Di ⊆ In+qi such that Di has dimen-
sion and dim(Di) < dim(Bi);

(G2) d := dim(Bi) ≤ m, and there is a strictly increasing λ : {1, . . . , d} −→
{1, . . . ,m} such that Πλ

∣∣Bi : Bi −→ Rm is an immersion.

From the previous section, we obtain

Corollary 5.1. Every Λ-set A ⊆ In has the Λ-Gabrielov property. Moreover, the
corresponding Bi can be chosen to be ∆-definable from A.
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Proof. Note first that if A ⊆ In in Corollary 4.4 or in Proposition 4.7, then each Ni
can be taken to be a subset of Ini (simply multiply the coordinates xn+1, . . . , xni
by some small enough δ > 0). The corollary therefore follows from Proposition 4.7
and Remark 3.5(1). �

We now fix, for each n ≥ 1, an arbitrary R-subalgebra Dn of Cn,1 that is closed
with respect to partial differentiation and contains the maps x 7→ xi : In −→ I for
i = 1, . . . , n. We let F =

⋃
n∈NDn and put RD := R(F).

In the case of Example 3.1(1), RC coincides with RC(M); thus Theorem 1 follows
from the corresponding theorems below.

Theorem 5.2. The structure RD is model complete and o-minimal.

Proof. By well-known arguments (see [8, Corollary 2.8]), Corollary 5.1 implies that
the structure

(
I, {A ⊆ In : A ∈ Λn and n ∈ N}

)
is o-minimal. On the other hand,

note that every Λ-set is quantifier-free definable in RC , and for every quantifier-
free definable set A ⊆ Rn, the set τn(A) is a Λ-set, where τn(x1, . . . , xn) :=(
x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n

)
. Thus by [8, Corollary 2.9], RC is model complete

and o-minimal. Finally, it follows from the proof of [8, Corollary 2.8] and the second
statement of Corollary 5.1 that RD is also model complete. �

Next, we show that RD is polynomially bounded. (Recall that an expansionR of
the real field is polynomially bounded if for every definable function f : R −→ R
there is a p ∈ N such that |f(t)| ≤ tp for all sufficiently large t.)

Lemma 5.3 (Curve Selection). Let B ⊆ Rn be definable in RC, and let 0 ∈ bd(B).
Then there exists a g = (g1, . . . , gn) ∈ (C1)n such that g(0) = 0 and g(t) ∈ B for
all sufficiently small t > 0.

Proof. We may clearly assume that B is bounded. By Theorem 5.2 and because
RC is an expansion of the real field, we may even assume that B = Πn(D) for some
bounded C-semianalytic set D ⊆ Rm with m ≥ n. Thus the curve selection lemma
follows from Corollary 4.4 and Remark 3.5(2). �
Theorem 5.4. RD is polynomially bounded, and the function xλ : (0, 1) −→ R is
definable in RD if and only if λ ∈ Q.

Proof. It clearly suffices to prove the theorem for RC . Let ε > 0 and let f : (0, ε) −→
R be definable in RC ; we show that for some nonzero c ∈ R and r ∈ Q we have
limx→0+ f(x)/xr = c.

Replacing f by 1/f if necessary, we may clearly assume that limx→0 f(t) = 0.
Then (0, 0) ∈ fr(Γ(f)), so by Lemma 5.3 there are δ > 0 and g1, g2 ∈ C1 such
that (g1(t), g2(t)) ∈ Γ(f) for all t ∈ (0, δ) and g1(0) = g2(0) = 0. Let p, q ∈
N \ {0}, a, b ∈ R \ {0} and h1, h2 ∈ C1 be such that g1(T ) = T p(a + h1(T )) and
g2(T ) = T q(b + h2(T )) and h1(0) = h2(0) = 0. Since for all sufficiently small
x > 0 there is a t ∈ (0, δ) such that (x, f(x)) = (g1(t), g2(t)), it follows that
limx→0+ f(x)/xq/p = b/aq/p. �
Remark. Let C′B be the system associated to R = RC as in Example 3.1(2). Then
for each n, we have Cn ⊆ C′n, but we do not know if Cn = C′n. The latter equality
is related to the open question whether RC admits quantifier elimination or even a
preparation theorem in the spirit of [17] or [13].

Finally, we show that RD admits C∞ cell decomposition.
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Lemma 5.5. Let A ⊆ Rn be definable in RD. Then A is a finite union of C∞

manifolds that are definable in RD.

Proof. By induction on d := dim(A); the case d = 0 is trivial, so we assume
that d > 0 and the lemma holds for lower values of d. By model completeness,
there is a C-semianalytic set C ⊆ Rn′ with n′ ≥ n such that A = Πn(C) and C
is definable in RD. Using an analytic, semialgebraic diffeomorphism mapping Rn
onto (−1, 1)n, we may assume that A and C are bounded. Thus by Proposition
4.7, we may even assume that there is a C-semianalytic manifold B ⊆ Rm with
n ≤ m, definable in RD, such that A = Πn(B) and Πn

∣∣B is an immersion. Using
cell decomposition, we now partition B into cells B1, . . . , Bk definable in RD. By
the inductive hypothesis, it suffices to show that if i ∈ {1, . . . , k} is such that
dim(ΠnBi) = d, then Πn(Bi) is a C∞ manifold. Fix such an i; since Πn

∣∣B is an
immersion, we have dim(B) = d, so that dim(Bi) = dim(ΠnBi). Since Bi is a cell,
it follows that Πn

∣∣Bi is a homeomorphism onto Πn(Bi). Also, Bi must be open in
B, and hence is itself a C∞ manifold. Thus the image Πn(Bi) of the C∞ immersion
Πn

∣∣Bi is a C∞ manifold. �

Theorem 5.6. RD admits C∞ cell decomposition.

Proof. We show by induction on n that if A is a finite collection of subsets of Rn
definable in RD, then there is a decomposition of Rn into C∞ cells definable in
RD that is compatible with each member of A. The cases n = 0, 1 are trivial, so
we assume that n > 1. Let f : A −→ R be a C1 function definable in RD with
A ⊆ Rn−1 a C1 cell. It suffices to partition A into C∞ cells A1, . . . , AK definable
in RD such that f

∣∣Aj is C∞ for each j. This follows from the inductive hypothesis
by applying Lemma 5.5 to Γ(f). �

6. Appendix: Denjoy-Carleman classes and the sum theorem

Let M = (M0,M1, . . . ) with 1 ≤M0 ≤M1 ≤ · · · be a sequence of real numbers.
We assume that M is strongly log-convex, that is,

(SLC) ∀k ≥ 1,
(
Mk

k!

)2

≤ Mk+1

(k + 1)!
· Mk−1

(k − 1)!
.

Recall that M (j) = (Mi+j)i for each j ∈ N. The following elementary observations
were pointed out to us by V. Thilliez:

Lemma 6.1. (1) Let m0 := M0 and mi := (Mi/i!)1/(i−1) for i ≥ 1. Then the
sequence m = (m0,m1, . . . ) is almost increasing, that is, there is a constant
C ≥ 1 such that mi ≤ C ·mj for all j ≥ i ≥ 2.

(2) Let N (j)
i := i!

(i+j)!Mi+j for each i, j ∈ N. Then N (j) := (N (j)
i ) is strongly

log-convex and C0
B(M (j)) = C0

B(N (j)) for each j and every compact box B.

Proof. (1) Note first that m is almost increasing if and only if the sequence m̃ =
(m̃0, m̃1, . . . ) is almost increasing, where m̃0 := 1 and m̃i :=

(Mi/M0
i!

)1/(i−1)
for

i ≥ 1. We may therefore assume that m0 = M0 = 1.
We put li := log(Mi/i!) for i ≥ 1. A straightforward induction on i now proves

i · li−1 ≤ (i− 1)li for all i ≥ 1. Applying this repeatedly, we get for j ≥ i ≥ 2:

(j − 1)li ≤ (j − 1)
i

i+ 1
li+1 ≤ · · · ≤ (j − 1)

i

j
lj ≤ 2(i− 1)lj.
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(2) It is straightforward to see that N (j) satisfies (SLC) for each j. Moreover,
C0
B(M (j)) = C0

B(N (j)) follows from the fact that j!i! ≤ (i + j)! ≤ (2j)ij!i! for all
i, j ∈ N. �

The following is a noteworthy consequence of the previous lemma:

Corollary 6.2. For every compact box B ⊆ Rn, n ∈ N, the class C0
B(M) contains

all functions that are analytic on a neighborhood of B.

Proof. The proof of Lemma 6.1(1) shows in particular that the sequence of all(
Mi/M0
i!

)1/i

is nondecreasing. It follows (by induction on i) that Mi/M0
i! ≥ 1 for all

i, that is, Mi ≥M0i!. �

Together with [12] and [18], Lemma 6.1 also implies

Proposition 6.3. (1) Let d, e ≥ 1, f ∈ C0
[−1,1]d(M) and gi ∈ C0

[−1,1]e(M)
for i = 1, . . . , d. Suppose that gi([−1, 1]e) ⊆ [−1, 1] for each i and put
g := (g1, . . . , gd). Then f ◦ g ∈ C0

[−1,1]e(M).
(2) Let f ∈ C0

[−1,1]d+1(M), and let g : [−1, 1]d −→ [−1, 1] be a C∞ function

such that f(x1, . . . , xd, g(x1, . . . , xd)) = 0 and ∂f
∂xd+1

(x1, . . . , xd+1) 6= 0 for
all x1, . . . , xd+1 ∈ [−1, 1]. Then g belongs to C0

[−1,1]d(M).

We now obtain the following from Proposition 6.3 and Lemma 6.1(2):

Corollary 6.4. If M is strongly log-convex, then the system of all CB(M), with
B ⊆ Rn a compact box and n ∈ N, is closed under composition and extracting
implicit functions.

Using the previous corollary, an elementary argument shows that if B ⊆ Rn is
a compact box and 0 ∈ B, and if f ∈ CB(M) and i ∈ {1, . . . , n} are such that
f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for all sufficiently small x1, . . . , xi−1, xi+1, . . . ,
xn ∈ R, there exist a compact box B′ ⊆ B containing 0 and g ∈ CB′(M) such that
f(x) = xi · g(x) for all x ∈ B′. Hence

Corollary 6.5. If M is residually log-convex, then the system of all CB(M), with
B ⊆ Rn a compact box and n ∈ N, satisfies (C1)–(C7).

Finally, we aim to prove Theorem 2; it will follow, via elementary facts on Fourier
series, from the following result.

Lemma 6.6. Suppose that
∑∞

n=0 γn is a series of nonnegative real numbers with
the property that, for each k ≥ 0, the series

∑∞
n=0 n

kγn converges. Then there
exist strongly log-convex sequences M = (M0,M1, . . . ) and N = (N0, N1, . . . ), both
satisfying (QA), and a subset S ⊆ N, such that, for all k ≥ 0,∑

n∈S
nkγn ≤Mk and

∑
n∈N\S

nkγn ≤ Nk.

Proof. (Following [11, p. 117]) We introduce constants c0 := max {1,
∑∞
n=0 γn}

and c1 := max {c0,
∑∞
n=0 nγn} and define M0 = N0 := c0 and M1 = N1 := c1.

Let λ0 := 1 and suppose, for an inductive construction, that we have defined
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integers λ0 < µ1 < λ1 < µ2 < · · · < µj < λj (for some j ≥ 0) and real numbers
M0 ≤M1 ≤ · · · ≤Mλj , N0 ≤ N1 ≤ · · · ≤ Nλj , satisfying the following conditions:

µi+1∑
k=1+λi

Mk−1

Mk
≥ 1, for each even i with 0 ≤ i < j;(1j)

µi+1∑
k=1+λi

Nk−1

Nk
≥ 1, for each odd i with 0 < i < j;(2j)

and for all i with 0 ≤ i < λj(
Mi

i!

)2

≤
(
Mi+1

(i + 1)!

)(
Mi−1

(i− 1)!

)
and(3j) (

Ni
i!

)2

≤
(

Ni+1

(i + 1)!

)(
Ni−1

(i− 1)!

)
.(4j)

We extend these sequences as follows:

Case 1. j is even. Choose µj+1 > λj large enough so that
µj+1∑

k=1+λj

1
k
≥ max

{
Mλj , c0(1 + λj)1+λj

}
.

Now choose λj+1 > µj+1 large enough so that
∑∞

n=1+λj+1
nµj+1γn < 1. Now set

Mk :=

max
{

kM2
k−1

(k−1)Mk−2
, c0(1 + λj)k

}
for λj < k ≤ µj+1,

max
{

kM2
k−1

(k−1)Mk−2
,
∑∞

n=0 n
kγn

}
for µj+1 < k ≤ λj+1

and

Nk := max

{
kN2

k−1

(k − 1)Nk−2
,

∞∑
n=0

nkγn

}
for λj < k ≤ λj+1.

(Notice that k−1 > 0 for the values of k, j considered above.) It follows immediately
by induction that the Mk’s and Nk’s are increasing and ≥ 1.

We claim that Mk/Mk−1 ≤ kθ, for all k with λj < k ≤ µj+1, where θ :=
max

{
Mλj , c0(1 + λj)1+λj

}
. For this is clear if k = 1 + λj by definition of M1+λj .

Also, if 1 + λj < k ≤ µj+1, then either

Mk

Mk−1
=

k

k − 1
Mk−1

Mk−2

≤ k

k − 1
· (k − 1)θ (by inductive hypothesis)

= kθ

or
Mk

Mk−1
=
c0(1 + λj)k

Mk−1
≤ c0(1 + λj)k

c0(1 + λj)k−1
≤ 1 + λj ≤ θ ≤ kθ.

This completes the proof of the claim, from which it follows that
µj+1∑

k=1+λj

Mk−1

Mk
≥

µj+1∑
k=1+λj

1
kθ
≥ 1 (by definition of µj+1).
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This and condition (1)j imply condition (1)j+1. Clearly condition (2)j implies
condition (2)j+1, since j is even. Conditions (3)j+1 and (4)j+1 follow directly from
the definitions of Mk and Nk for λj < k ≤ λj+1.

Case 2. j is odd. The construction here is the same as in the even case, except
that the roles of the Mk’s and Nk’s are interchanged.

This completes the construction of the sequences M = (M0,M1, . . . ) and N =
(N0, N1, . . . ). They both satisfy (SLC) by conditions (3)j , (4)j and (QA) by con-
ditions (1)j , (2)j (for j = 0, 1, . . . ).

Now set S := {k ∈ N : λj < k ≤ λj+1 for some odd j ∈ N}. To complete
the proof of the lemma, let k ≥ 0 be given. If k = 0 or k = 1, then certainly∑
n∈S n

kγn ≤
∑∞

n=0 n
kγn ≤ Mk (by definition of M0, M1) and

∑
n∈N\S n

kγn ≤∑∞
n=0 n

kγn ≤ Nk (by definition of N0, N1). So we assume k > 1 and let j be the
unique i > 0 such that λi < k ≤ λi+1.

If j is even, then
∑
n∈N\S n

kγn ≤
∑∞

n=0 n
kγn ≤ Nk (by definition of Nk). Sim-

ilarly, if µj+1 < k ≤ λj+1, then
∑
n∈S n

kγn ≤
∑∞

n=0 n
kγn ≤ Mk (by definition of

Mk). Finally, if λj < k ≤ µj+1, then∑
n∈S

nkγn ≤
∑
n≤λj

nkγn +
∞∑

n=1+λj+1

nkγn

(by definition of S, since j is even). Thus∑
n∈S

nkγn ≤ λkj ·
∞∑
n=0

γn +
∞∑

n=1+λj+1

nµj+1γn

≤ c0λkj + 1 (by definition of λj+1 and of c0)

≤ c0(1 + λj)k (as c0 ≥ 1)

≤Mk (by the definition of Mk for λj < k ≤ µj+1).

If j is odd, the proof is similar with the roles of Mk and Nk interchanged. This
completes the proof of the lemma.

�

Now suppose that f : [−1, 1]d −→ R is a C∞ function (for some d ≥ 1). Extend
f to a C∞ function f∗ : Rd −→ R. Define g : Rd −→ R by g(θ1, . . . , θd) :=
f∗(3 cos θ1, . . . , 3 cos θd). Then g is a C∞ function which is 2π-periodic and even
(in each variable). The Fourier series of g may be therefore written in the form

(6.1) g(θ1, . . . , θd) =
∞∑
n=0

( ∑
α=(α1,...,αd)∈Nd

|α|=n

aα · cosα1θ1 · · · cosαdθd

)
,

where the Fourier coefficients aα are given by

(6.2) aα =
1

(2π)d

∫ π

−π
· · ·
∫ π

−π
g(θ1, . . . , θd) · cosα1θ1 · · · cosαdθd · dθ1 · · · dθd.

Now, for each k ≥ 0, let

Ak := sup
{
|g(β)(θ1, . . . , θd)| : β ∈ Nd, |β| = k, θ1, . . . , θd ∈ R

}
.
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Suppose that i is such that 1 ≤ i ≤ d and αi 6= 0 in (6.2). Then repeated integration
by parts of (6.2) (with respect to the variable θi) yields, for any k ≥ 0, |aα| ≤
Ad−1

0 · Ak · α−ki . Now if n ≥ 1 and α ∈ Nd satisfies |α| = n, then we may choose
i such that αi ≥ n/d, and hence it follows that |aα| ≤ Ad−1

0 · Ak · dk · n−k for all
k ≥ 0. Thus ∑

α∈Nd
|α|=n

|aα| ≤ (n+ 1)d ·Ad0 ·Ak · dk · n−k for all k ≥ 0.

In particular, it follows that for n ≥ max{2, A0},

(6.3)
∑
α∈Nd
|α|=n

|aα| ≤ Ak+3d+2 · n−k−2 for all k ≥ 0.

So, if we set γn :=
∑

α∈Nd
|α|=n

|aα| (for n ≥ 0), then (6.3) implies that
∑∞
n=0 n

kγn

converges for all k ≥ 0, and we may apply the lemma to obtain strongly log-convex
sequences M and N , both satisfying (QA), and a subset S ⊆ N satisfying the
conclusion of the lemma. Define

(6.4) gi(θ1, . . . , θd) :=
∑
n∈Si

( ∑
α=(α1,...,αd)∈Nd

|α|=n

aα · cosα1θ1 · · · cosαdθd

)
,

for i = 1, 2, where S1 := S and S2 := N \ S.
Clearly g1, g2 are C∞ functions and g = g1 + g2. Furthermore, (6.3) readily

implies that the series in (6.4) may be differentiated term by term any number of
times (to yield the corresponding derivatives of g1, g2), so we obtain, for any k ≥ 0
and β = (β1, . . . , βd) ∈ Nd with |β| = k,

|g(β)
i (θ1, . . . , θd)| ≤

∑
n∈Si

( ∑
α=(α1,...,αd)∈Nd

|α|=n

|aα| · αβ1
1 · · ·α

βd
d

)

≤
∑
n∈Si

nk
∑
α∈Nd
|α|=n

|aα| =
∑
n∈Si

nkγn

≤
{
Mk if i = 1,
Nk if i = 2.

Now choose an inverse of the function 3 · cos θ, cos−1 x
3 say, which is analytic on

the interval (−2, 2). By Corollary 6.2, the restriction of cos−1 x
3 to [−1, 1] belongs

to C0
[−1,1](M) and to C0

[−1,1](N). Thus, by setting

fi(x1, . . . , xd) := gi

(
cos−1 x1

3
, . . . , cos−1 xd

3

)
for i = 1, 2 and x ∈ [−1, 1]d, we have established part (1) of Theorem 2.

Now let f : [−1, 1] −→ R be a C∞ function whose Taylor series at every x ∈
[−1, 1] is divergent, and apply part (1) of Theorem 2 to f . By quasianalyticity and
Corollary 6.2, one of the two summands f1, f2 thus obtained must have a divergent
Taylor series at every x belonging to some open interval I ⊆ [−1, 1]. Therefore,
part (2) of Theorem 2 follows from part (1).
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In fact, Lemma 6.6 implies rather more, for an easy diagonalization shows that
any countable sequence of series satisfying the hypotheses of the lemma can be
majorized by a series that also satisfies these hypotheses. Hence

Theorem 6.7. Let S be a countable collection of C∞ real valued functions, each
defined on an open neighourhood of [−1, 1]d for some d ≥ 1. Then there exist
strongly log-convex sequences M and N , both satisfying (QA), such that for each
f ∈ S with [−1, 1]d contained in the domain of f , there are f1 ∈ C0

[−1,1]d(M) and
f2 ∈ C0

[−1,1]d(N) such that f = f1 + f2.

Added after posting

Dan Miller pointed out an error concerning Theorem 5.2: the assumptions on
the systems D, as stated before Theorem 5.2, are too weak. Indeed, they do not
guarantee the following property needed for our arguments: if A ⊆ Rn is quantifier-
free definable in RD, then for every a ∈ Rn there is an r ∈ (0,∞)n such that
(A− a) ∩ Ir is a finite union of sets of the form

{x ∈ Ir : f(x/r) = 0, g1(x/r) > 0, . . . , gk(x/r) > 0} ,
where f, g1, . . . , gk ∈ Dn and x/r := (x1/r1, . . . , xn/rn). (More specifically, we need
this property in Corollary 4.4 to guarantee ∆-definability as stated there.)

Therefore, Theorem 5.2 only applies to systems D = (Dn) such that for each
n ≥ 1, Dn is an R-subalgebra of Cn,1 satisfying

(D1) Dn is closed with respect to partial differentiation and contains the maps
x 7→ xi : In −→ I for i = 1, . . . , n, and

(D2) for every f ∈ Dn there are an ε > 1 and a g ∈ Cn,ε such that the function
x 7→ g(εx) : In −→ R belongs to Dn.

Of course, if D = C, then D satisfies (D1) and (D2) by hypothesis. On the other
hand, the extra assumption (D2) makes our proof less “explicit” than that in [10].

References

[1] S. S. Abhyankar and T. T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen
transformation I, J. Reine Angew. Math., 260 (1973), pp. 47–83. MR 49:2724

[2] , Newton-Puiseux expansion and generalized Tschirnhausen transformation II, J. Reine
Angew. Math., 261 (1973), pp. 29–54. MR 49:2724

[3] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci.
Publ. Math., 67 (1988), pp. 5–42. MR 89k:32011

[4] , Canonical desingularization in characteristic zero by blowing up the maximum strata
of a local invariant, Invent. Math., 128 (1997), pp. 207–302. MR 98e:14010

[5] C. L. Childress, Weierstrass division in quasianalytic local rings, Canad. J. Math., 28 (1976),
pp. 938–953. MR 54:5491

[6] L. van den Dries, O-minimal structures and real analytic geometry, in Current developments
in mathematics, 1998, International Press, 1999, pp. 105–152. MR 2001j:03075

[7] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math.
J., 84 (1996), pp. 497–540. MR 97i:32008

[8] L. van den Dries and P. Speissegger, The real field with convergent generalized power series
is model complete and o-minimal, Trans. Amer. Math. Soc., 350 (1998), pp. 4377–4421. MR
99a:03036

[9] , The field of reals with multisummable series and the exponential function, Proc.

London Math. Soc. (3), 81 (2000), pp. 513–565. MR 2002k:03057
[10] A. Gabrielov, Complements of subanalytic sets and existential formulas for analytic func-

tions, Invent. Math., 125 (1996), pp. 1–12. MR 97h:32007
[11] Y. Katznelson, Introduction to Harmonic Analysis, John Wiley, 1968. MR 40:1734

http://www.ams.org/mathscinet-getitem?mr=49:2724
http://www.ams.org/mathscinet-getitem?mr=49:2724
http://www.ams.org/mathscinet-getitem?mr=89k:32011
http://www.ams.org/mathscinet-getitem?mr=98e:14010
http://www.ams.org/mathscinet-getitem?mr=54:5491
http://www.ams.org/mathscinet-getitem?mr=2001j:03075
http://www.ams.org/mathscinet-getitem?mr=97i:32008
http://www.ams.org/mathscinet-getitem?mr=99a:03036
http://www.ams.org/mathscinet-getitem?mr=2002k:03057
http://www.ams.org/mathscinet-getitem?mr=97h:32007
http://www.ams.org/mathscinet-getitem?mr=40:1734


QUASIANALYTIC DENJOY-CARLEMAN CLASSES AND O-MINIMALITY 777

[12] H. Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan
Acad., Ser. A, 55 (1979), pp. 69–72. MR 80e:58007
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