Oort’s conjecture for $A_{g} \otimes {\mathbb {C}}$
HTML articles powered by AMS MathViewer
- by Sean Keel and Lorenzo Sadun;
- J. Amer. Math. Soc. 16 (2003), 887-900
- DOI: https://doi.org/10.1090/S0894-0347-03-00431-4
- Published electronically: May 30, 2003
- PDF | Request permission
Abstract:
We prove the conjecture of Oort that a compact subvariety of the moduli space of principally polarized Abelian varieties of genus $g$ has codimension strictly greater than $g$, in characteristic zero, for $g \geq 3$.References
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- E. Colombo and G. P. Pirola, Some density results for curves with nonsimple Jacobians, Math. Ann. 288 (1990), no. 1, 161–178. MR 1070930, DOI 10.1007/BF01444527
- Steven Diaz, Complete subvarieties of the moduli space of smooth curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 77–81. MR 927950, DOI 10.1090/pspum/046.1/927950 [EV02]EV02 H. Esnault and E. Viehweg, Chern classes of Gauss-Manin bundles of weight $1$ vanish, preprint math.AG/020103, 2002.
- Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
- Carel Faber and Eduard Looijenga, Remarks on moduli of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 23–45. MR 1722537
- C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215–252. With an appendix by Don Zagier; Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786488, DOI 10.1307/mmj/1030132716
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Phillip Griffiths (ed.), Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. MR 756842, DOI 10.1515/9781400881659
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Gerard van der Geer, Cycles on the moduli space of abelian varieties, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 65–89. MR 1722539, DOI 10.1007/978-3-322-90172-9_{4}
- Gerard van der Geer and Frans Oort, Moduli of abelian varieties: a short introduction and survey, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 1–21. MR 1722536, DOI 10.1007/978-3-322-90172-9_{1}
- E. Izadi, Density and completeness of subvarieties of moduli spaces of curves or abelian varieties, Math. Ann. 310 (1998), no. 2, 221–233. MR 1602079, DOI 10.1007/s002080050146
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- George R. Kempf, Complex abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin, 1991. MR 1109495, DOI 10.1007/978-3-642-76079-2
- Howard Levi, On the values assumed by polynomials, Bull. Amer. Math. Soc. 45 (1939), 570–575. MR 54, DOI 10.1090/S0002-9904-1939-07038-9
- Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 218496
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Sean Keel
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- MR Author ID: 289025
- Email: keel@math.utexas.edu
- Lorenzo Sadun
- Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas, 78712
- Email: sadun@math.utexas.edu
- Received by editor(s): May 1, 2002
- Published electronically: May 30, 2003
- Additional Notes: The first author was partially supported by NSF grant DMS-9988874
The second author was partially supported by Texas ARP grant 003658-152 - © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 887-900
- MSC (2000): Primary 14K10
- DOI: https://doi.org/10.1090/S0894-0347-03-00431-4
- MathSciNet review: 1992828