Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Oort’s conjecture for $A_{g} \otimes {\mathbb {C}}$


Authors: Sean Keel and Lorenzo Sadun
Journal: J. Amer. Math. Soc. 16 (2003), 887-900
MSC (2000): Primary 14K10
DOI: https://doi.org/10.1090/S0894-0347-03-00431-4
Published electronically: May 30, 2003
MathSciNet review: 1992828
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the conjecture of Oort that a compact subvariety of the moduli space of principally polarized Abelian varieties of genus $g$ has codimension strictly greater than $g$, in characteristic zero, for $g \geq 3$.


References [Enhancements On Off] (What's this?)

  • Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344
  • Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
  • E. Colombo and G. P. Pirola, Some density results for curves with nonsimple Jacobians, Math. Ann. 288 (1990), no. 1, 161–178. MR 1070930, DOI https://doi.org/10.1007/BF01444527
  • Steven Diaz, Complete subvarieties of the moduli space of smooth curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 77–81. MR 927950
  • [EV02]EV02 H. Esnault and E. Viehweg, Chern classes of Gauss-Manin bundles of weight $1$ vanish, preprint math.AG/020103, 2002.
  • Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
  • Carel Faber and Eduard Looijenga, Remarks on moduli of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 23–45. MR 1722537
  • C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215–252. With an appendix by Don Zagier; Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786488, DOI https://doi.org/10.1307/mmj/1030132716
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • Phillip Griffiths (ed.), Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. MR 756842
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • Gerard van der Geer, Cycles on the moduli space of abelian varieties, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 65–89. MR 1722539, DOI https://doi.org/10.1007/978-3-322-90172-9_4
  • Gerard van der Geer and Frans Oort, Moduli of abelian varieties: a short introduction and survey, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 1–21. MR 1722536, DOI https://doi.org/10.1007/978-3-322-90172-9_1
  • E. Izadi, Density and completeness of subvarieties of moduli spaces of curves or abelian varieties, Math. Ann. 310 (1998), no. 2, 221–233. MR 1602079, DOI https://doi.org/10.1007/s002080050146
  • David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
  • George R. Kempf, Complex abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin, 1991. MR 1109495
  • [Koblitz75]Koblitz75 N. Koblitz, $p$-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119–218.
  • Jean-Pierre Serre, Lie algebras and Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1965. Lectures given at Harvard University, 1964. MR 0218496
  • Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14K10

Retrieve articles in all journals with MSC (2000): 14K10


Additional Information

Sean Keel
Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
MR Author ID: 289025
Email: keel@math.utexas.edu

Lorenzo Sadun
Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas, 78712
Email: sadun@math.utexas.edu

Received by editor(s): May 1, 2002
Published electronically: May 30, 2003
Additional Notes: The first author was partially supported by NSF grant DMS-9988874
The second author was partially supported by Texas ARP grant 003658-152
Article copyright: © Copyright 2003 American Mathematical Society