Billiards and Teichmüller curves on Hilbert modular surfaces
HTML articles powered by AMS MathViewer
- by Curtis T. McMullen PDF
- J. Amer. Math. Soc. 16 (2003), 857-885 Request permission
Abstract:
This paper exhibits an infinite collection of algebraic curves isometrically embedded in the moduli space of Riemann surfaces of genus two. These Teichmüller curves lie on Hilbert modular surfaces parameterizing Abelian varieties with real multiplication. Explicit examples, constructed from L-shaped polygons, give billiard tables with optimal dynamical properties.References
- Lars V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces. , Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 45–66. MR 0124486 [Ca]Calta:genus2 K. Calta. Veech surfaces and complete periodicity in genus 2. Preprint, 5/2002.
- Ciro Ciliberto and Gerard van der Geer, Subvarieties of the moduli space of curves parametrizing Jacobians with nontrivial endomorphisms, Amer. J. Math. 114 (1992), no. 3, 551–570. MR 1165353, DOI 10.2307/2374769
- C. Ciliberto, G. van der Geer, and M. Teixidor i Bigas, On the number of parameters of curves whose Jacobians possess nontrivial endomorphisms, J. Algebraic Geom. 1 (1992), no. 2, 215–229. MR 1144437
- Paula Cohen and Jürgen Wolfart, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith. 56 (1990), no. 2, 93–110. MR 1075639, DOI 10.4064/aa-56-2-93-110
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Alex Eskin and Andrei Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001), no. 1, 59–103. MR 1839286, DOI 10.1007/s002220100142 [FLP]FLP A. Fathi, F. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces. Astérisque, volume 66–67, 1979.
- Benedict H. Gross and David E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), no. 3, 201–224. MR 491708, DOI 10.1007/BF01403161
- Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. MR 1760625, DOI 10.1215/S0012-7094-00-10321-3
- Friedrich Hirzebruch and Gerard van der Geer, Lectures on Hilbert modular surfaces, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 77, Presses de l’Université de Montréal, Montreal, Que., 1981. Based on notes taken by W. Hausmann and F. J. Koll. MR 639898
- Richard Kenyon and John Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000), no. 1, 65–108. MR 1760496, DOI 10.1007/s000140050113
- Steven Kerckhoff, Howard Masur, and John Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), no. 2, 293–311. MR 855297, DOI 10.2307/1971280
- M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) Adv. Ser. Math. Phys., vol. 24, World Sci. Publ., River Edge, NJ, 1997, pp. 318–332. MR 1490861 [KZ]Kontsevich:Zorich:components M. Kontsevich and A. Zorich. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Preprint, 2002.
- Irwin Kra, The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math. 40 (1981), 129–143 (1982). MR 659787, DOI 10.1007/BF02790158
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- Howard Masur, Transitivity properties of the horocyclic and geodesic flows on moduli space, J. Analyse Math. 39 (1981), 1–10. MR 632453, DOI 10.1007/BF02803327
- Howard Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 215–228. MR 955824, DOI 10.1007/978-1-4613-9602-4_{2}0
- Howard Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387–442. MR 1167101, DOI 10.1215/S0012-7094-92-06613-0 [MT]Masur:Tabachnikov:survey H. Masur and S. Tabachnikov. Rational billiards and flat structures. In Handbook of Dynamical Systems, Vol. 1A, pages 1015–1089. North–Holland, 2002. [Mc]McMullen:flux C. McMullen. Teichmüller geodesics of infinite complexity. To appear, Acta Math.
- R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), no. 2, 443–450. MR 1068128, DOI 10.1090/S0002-9939-1991-1068128-8
- Jan-Christoph Puchta, On triangular billiards, Comment. Math. Helv. 76 (2001), no. 3, 501–505. MR 1854695, DOI 10.1007/PL00013215
- M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), no. 3, 255–335 (French). MR 515050
- H. L. Royden, Invariant metrics on Teichmüller space, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 393–399. MR 0377116
- Paul Schmutz Schaller and Jürgen Wolfart, Semi-arithmetic Fuchsian groups and modular embeddings, J. London Math. Soc. (2) 61 (2000), no. 1, 13–24. MR 1745404, DOI 10.1112/S0024610799008315
- Thomas A. Schmidt, Klein’s cubic surface and a “non-arithmetic” curve, Math. Ann. 309 (1997), no. 4, 533–539. MR 1483822, DOI 10.1007/s002080050126 [Tab]Tabachnikov:book:billiards S. Tabachnikov. Billiards. Société Mathématique de France, 1995.
- Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101, DOI 10.1007/978-3-642-61553-5
- W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
- William A. Veech, Moduli spaces of quadratic differentials, J. Analyse Math. 55 (1990), 117–171. MR 1094714, DOI 10.1007/BF02789200
- William A. Veech, The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992), no. 3, 341–379. MR 1177316, DOI 10.1007/BF01896876
- William A. Veech, Geometric realizations of hyperelliptic curves, Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992) Plenum, New York, 1995, pp. 217–226. MR 1402493
- Ya. B. Vorobets, Plane structures and billiards in rational polygons: the Veech alternative, Uspekhi Mat. Nauk 51 (1996), no. 5(311), 3–42 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 5, 779–817. MR 1436653, DOI 10.1070/RM1996v051n05ABEH002993
- Clayton C. Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 1019–1042. MR 1645350, DOI 10.1017/S0143385798117479
Additional Information
- Curtis T. McMullen
- Affiliation: Mathematics Department, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138-2901
- Received by editor(s): April 8, 2002
- Published electronically: June 19, 2003
- Additional Notes: Research supported in part by the NSF
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 16 (2003), 857-885
- MSC (2000): Primary 32G15; Secondary 37D50, 11F41, 14G35
- DOI: https://doi.org/10.1090/S0894-0347-03-00432-6
- MathSciNet review: 1992827