Random polynomials with prescribed Newton polytope
Authors:
Bernard Shiffman and Steve Zelditch
Journal:
J. Amer. Math. Soc. 17 (2004), 49-108
MSC (2000):
Primary 12D10, 60D05; Secondary 14Q99, 32H99, 52B20
DOI:
https://doi.org/10.1090/S0894-0347-03-00437-5
Published electronically:
September 18, 2003
MathSciNet review:
2015330
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Newton polytope $P_f$ of a polynomial $f$ is well known to have a strong impact on its behavior. The Bernstein-Kouchnirenko Theorem asserts that even the number of simultaneous zeros in $(\mathbb {C}^*)^m$ of a system of $m$ polynomials depends on their Newton polytopes. In this article, we show that Newton polytopes also have a strong impact on the distribution of zeros and pointwise norms of polynomials, the basic theme being that Newton polytopes determine allowed and forbidden regions in $(\mathbb {C}^*)^m$ for these distributions. Our results are statistical and asymptotic in the degree of the polynomials. We equip the space of polynomials of degree $\leq p$ in $m$ complex variables with its usual SU$(m+1)$-invariant Gaussian probability measure and then consider the conditional measure induced on the subspace of polynomials with fixed Newton polytope $P$. We then determine the asymptotics of the conditional expectation $\mathbf {E}_{|N P}(Z_{f_1, \dots , f_k})$ of simultaneous zeros of $k$ polynomials with Newton polytope $NP$ as $N \to \infty$. When $P = \Sigma$, the unit simplex, it is clear that the expected zero distributions $\mathbf {E}_{|N\Sigma }(Z_{f_1, \dots , f_k})$ are uniform relative to the Fubini-Study form. For a convex polytope $P\subset p\Sigma$, we show that there is an allowed region on which $N^{-k}\mathbf {E}_{|N P}(Z_{f_1, \dots , f_k})$ is asymptotically uniform as the scaling factor $N\to \infty$. However, the zeros have an exotic distribution in the complementary forbidden region and when $k = m$ (the case of the Bernstein-Kouchnirenko Theorem), the expected percentage of simultaneous zeros in the forbidden region approaches 0 as $N\to \infty$.
- Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy and asymptotics of integrals; Translated from the Russian by Hugh Porteous; Translation revised by the authors and James Montaldi. MR 966191
- M. F. Atiyah, Angular momentum, convex polyhedra and algebraic geometry, Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 2, 121–133. MR 705256, DOI https://doi.org/10.1017/S0013091500016837
- Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147. MR 1731815
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI https://doi.org/10.1007/BF02392348
- D. N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1–4 (Russian). MR 0435072
- Pavel Bleher, Bernard Shiffman, and Steve Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351–395. MR 1794066, DOI https://doi.org/10.1007/s002220000092
- Michel Brion and Michèle Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997), no. 2, 371–392. MR 1415319, DOI https://doi.org/10.1090/S0894-0347-97-00229-4
- Michel Brion and Michèle Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), no. 4, 797–833. MR 1446364, DOI https://doi.org/10.1090/S0894-0347-97-00242-7
- Michel Brion and Michèle Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67–92. MR 1427657, DOI https://doi.org/10.1515/crll.1997.482.67
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900
- E. Ehrhart, Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et réseaux, J. Reine Angew. Math. 226 (1967), 1–29 (French). MR 213320, DOI https://doi.org/10.1515/crll.1967.226.1
- Xian Ling Fan, The necessary and sufficient conditions for Lipschitz local homeomorphism, Chinese Ann. Math. Ser. B 13 (1992), no. 1, 40–45. A Chinese summary appears in Chinese Ann. Math. Ser. A 13 (1992), no. 1, 132. MR 1166873
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- Mikael Forsberg, Mikael Passare, and August Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math. 151 (2000), no. 1, 45–70. MR 1752241, DOI https://doi.org/10.1006/aima.1999.1856
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
- Victor Guillemin, Riemann-Roch for toric orbifolds, J. Differential Geom. 45 (1997), no. 1, 53–73. MR 1443331
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
- Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64 (1995), no. 212, 1541–1555. MR 1297471, DOI https://doi.org/10.1090/S0025-5718-1995-1297471-4
- A. V. Pukhlikov and A. G. Khovanskiĭ, The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra i Analiz 4 (1992), no. 4, 188–216 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 4, 789–812. MR 1190788
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31 (French). MR 419433, DOI https://doi.org/10.1007/BF01389769 [Ko2]Ku2 A. G. Kouchnirenko, Newton Polytopes and the Bezout theorem, Functional Anal. Appl. 10 (1976), 233–235. [MR]MaR G. Malajovich and J. M. Rojas, Random Sparse Polynomial Systems, E-print (2000), arxiv.org/math.NA/0012104.
- G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309–326. MR 1745011, DOI https://doi.org/10.2307/121119 [Mi2]M G. Mikhalkin, Amoebas of algebraic varieties, e-print archive, math.AG/0108225. [PR]PR M. Passare and H. Rullgård, Ameobas, Monge-Ampere measures and triangulations of the Newton polytope, Duke Math. J., to appear.
- J. Maurice Rojas, On the average number of real roots of certain random sparse polynomial systems, The mathematics of numerical analysis (Park City, UT, 1995) Lectures in Appl. Math., vol. 32, Amer. Math. Soc., Providence, RI, 1996, pp. 689–699. MR 1421361
- B. V. Shabat, Distribution of values of holomorphic mappings, Translations of Mathematical Monographs, vol. 61, American Mathematical Society, Providence, RI, 1985. Translated from the Russian by J. R. King; Translation edited by Lev J. Leifman. MR 807367 [STZ1]STZ1 B. Shiffman, T. Tate and S. Zelditch, Harmonic analysis on toric varieties, Contemporary Mathematics, Vol. 332, Amer. Math. Soc, Providence, RI, 2003, pp. 267–286. [STZ2]STZ2 B. Shiffman, T. Tate and S. Zelditch, Distribution laws for integrable eigenfunctions, E-print (2003), arxiv.org/math.CV/0306189.
- Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. MR 1675133, DOI https://doi.org/10.1007/s002200050544 [SZ2]SZ2 B. Shiffman and S. Zelditch, Random polynomials with prescribed Newton polytope I, E-print (2002), arxiv.org/math.AG/0203074. [SZ3]SZ3 B. Shiffman and S. Zelditch, Self-averaging of distributions of zeros of random polynomials (in preparation). [SZ4]SZ4 B. Shiffman and S. Zelditch, Random complex fewnomials (in preparation).
- Bernd Sturmfels, On the number of real roots of a sparse polynomial system, Hamiltonian and gradient flows, algorithms and control, Fields Inst. Commun., vol. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 137–143. MR 1297991, DOI https://doi.org/10.1007/978-1-4939-7486-3_1 [Th]Th T. Theobald, Computing amoebas, Experimental Math. 11 (2002), 513–526.
- Jan Verschelde, Toric Newton method for polynomial homotopies, J. Symbolic Comput. 29 (2000), no. 4-5, 777–793. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769666, DOI https://doi.org/10.1006/jsco.1999.0296
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 12D10, 60D05, 14Q99, 32H99, 52B20
Retrieve articles in all journals with MSC (2000): 12D10, 60D05, 14Q99, 32H99, 52B20
Additional Information
Bernard Shiffman
Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email:
shiffman@math.jhu.edu
Steve Zelditch
Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
MR Author ID:
186875
Email:
szelditch@jhu.edu
Keywords:
Random polynomial system,
distribution of zeros,
Newton polytope,
Szegö kernel,
polytope character,
Bernstein-Kouchnirenko Theorem,
amoeba,
zero current,
complex stationary phase
Received by editor(s):
March 12, 2002
Received by editor(s) in revised form:
May 17, 2003
Published electronically:
September 18, 2003
Additional Notes:
Research partially supported by NSF grant DMS-0100474 (first author) and DMS-0071358 (second author).
Article copyright:
© Copyright 2003
American Mathematical Society