Cusps and $\mathcal {D}$-modules
HTML articles powered by AMS MathViewer
- by David Ben-Zvi and Thomas Nevins;
- J. Amer. Math. Soc. 17 (2004), 155-179
- DOI: https://doi.org/10.1090/S0894-0347-03-00439-9
- Published electronically: September 24, 2003
- PDF | Request permission
Abstract:
We study interactions between the categories of $\mathcal {D}$-modules on smooth and singular varieties. For a large class of singular varieties $Y$, we use an extension of the Grothendieck-Sato formula to show that $\mathcal {D}_Y$-modules are equivalent to stratifications on $Y$, and as a consequence are unaffected by a class of homeomorphisms, the cuspidal quotients. In particular, when $Y$ has a smooth bijective normalization $X$, we obtain a Morita equivalence of $\mathcal {D}_Y$ and $\mathcal {D}_X$ and a Kashiwara theorem for $\mathcal {D}_Y$, thereby solving conjectures of Hart-Smith and Berest-Etingof-Ginzburg (generalizing results for complex curves and surfaces and rational Cherednik algebras). We also use this equivalence to enlarge the category of induced $\mathcal {D}$-modules on a smooth variety $X$ by collecting induced $\mathcal {D}_X$-modules on varying cuspidal quotients. The resulting cusp-induced $\mathcal {D}_X$-modules possess both the good properties of induced $\mathcal {D}$-modules (in particular, a Riemann-Hilbert description) and, when $X$ is a curve, a simple characterization as the generically torsion-free $\mathcal {D}_X$-modules.References
- H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), no. 1, 95–148. MR 649926, DOI 10.1002/cpa.3160300106
- M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 245577, DOI 10.1007/BFb0080957 [BGK1]BGK1 V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Quiver varieties and a noncommutative ${\mathbf {P}^2}$, Compositio Math. 134 (2002), no. 3, 283–318. [BGK2]BGK2 V. Baranovsky, V. Ginzburg, and A. Kuznetsov, Wilson’s Grassmannian and a noncommutative quadric, Int. Math. Res. Not. 2003, no. 21, 1155–1197.
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825 [BD1]Hecke A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, in preparation, available at http://www.math.uchicago.edu/~benzvi. [BD2]chiral A. Beilinson and V. Drinfeld, Chiral algebras, in preparation, available at http://www.math.uchicago.edu/~benzvi.
- A. A. Beĭlinson and V. V. Schechtman, Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988), no. 4, 651–701. MR 962493, DOI 10.1007/BF01221114 [BN1]solitons D. Ben-Zvi and T. Nevins, Solitons and Many-Body Systems, in preparation. [BN2]W D. Ben-Zvi and T. Nevins, ${\mathcal {W}}_{\infty }$-algebras and ${\mathcal {D}}$-moduli spaces, in preparation. [BEG]BEG Y. Berest, P. Etingof, and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), no. 2, 279–337.
- Yuri Berest and George Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), no. 1, 127–147. MR 1785579, DOI 10.1007/s002080000115
- Yuri Berest and George Wilson, Ideal classes of the Weyl algebra and noncommutative projective geometry, Int. Math. Res. Not. 26 (2002), 1347–1396. With an appendix by Michel Van den Bergh. MR 1904791, DOI 10.1155/S1073792802108051 [BW3]BW:diff Y. Berest and G. Wilson, Differential isomorphism and equivalence of algebraic varieties, preprint arXiv: math.AG/0304320.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Differential operators on a cubic cone, Uspehi Mat. Nauk 27 (1972), no. 1(163), 185–190 (Russian). MR 385159
- Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
- Pierre Berthelot, ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 2, 185–272 (French, with English summary). MR 1373933, DOI 10.24033/asens.1739
- Pierre Berthelot, $\scr D$-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000), vi+136 (French, with English and French summaries). MR 1775613
- R. C. Cannings and M. P. Holland, Right ideals of rings of differential operators, J. Algebra 167 (1994), no. 1, 116–141. MR 1282820, DOI 10.1006/jabr.1994.1179
- Rob C. Cannings and Martin P. Holland, Limits of compactified Jacobians and $\scr D$-modules on smooth projective curves, Adv. Math. 135 (1998), no. 2, 287–302. MR 1620838, DOI 10.1006/aima.1997.1710
- M. Chamarie and J. T. Stafford, When rings of differential operators are maximal orders, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 3, 399–410. MR 906614, DOI 10.1017/S0305004100067451
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902, DOI 10.1007/b75857
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- M. G. M. van Doorn and A. R. P. van den Essen, ${\scr D}_n$-modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), no. 6, 937–953. MR 935708, DOI 10.2977/prims/1195175865
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Peter Scherk, Bemerkungen zu einer Note von Besicovitch, J. London Math. Soc. 14 (1939), 185–192 (German). MR 29, DOI 10.1112/jlms/s1-14.3.185
- A. Grothendieck, Crystals and the de Rham cohomology of schemes, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 306–358. Notes by I. Coates and O. Jussila. MR 269663
- R. Hart and S. P. Smith, Differential operators on some singular surfaces, Bull. London Math. Soc. 19 (1987), no. 2, 145–148. MR 872128, DOI 10.1112/blms/19.2.145
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 224620, DOI 10.1007/BFb0073971
- Robin Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403–450. MR 232780, DOI 10.2307/1970720 [Ho]Hovey M. Hovey, Morita theory for Hopf algebroids and presheaves of groupoids, Amer. J. Math. 124 (2002), no.6, 1289–1318.
- Cohomologie $l$-adique et fonctions $L$, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin-New York, 1977 (French). Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5); Edité par Luc Illusie. MR 491704
- A. G. Jones, Some Morita equivalences of rings of differential operators, J. Algebra 173 (1995), no. 1, 180–199. MR 1327366, DOI 10.1006/jabr.1995.1083
- Igor Moiseevich Krichever, Rational solutions of the Kadomcev-Petviašvili equation and the integrable systems of $N$ particles on a line, Funkcional. Anal. i Priložen. 12 (1978), no. 1, 76–78 (Russian). MR 488139
- Igor Moiseevich Krichever, Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 45–54, 95 (Russian). MR 595728
- Ian M. Musson, Some rings of differential operators which are Morita equivalent to the Weyl algebra $A_1$, Proc. Amer. Math. Soc. 98 (1986), no. 1, 29–30. MR 848868, DOI 10.1090/S0002-9939-1986-0848868-1
- Morihiko Saito, Induced $\scr D$-modules and differential complexes, Bull. Soc. Math. France 117 (1989), no. 3, 361–387 (English, with French summary). MR 1020112, DOI 10.24033/bsmf.2128
- Takahiro Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994), no. 11, 5844–5849. MR 1299922, DOI 10.1063/1.530713
- S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra $A_{1}$, J. Algebra 73 (1981), no. 2, 552–555. MR 640048, DOI 10.1016/0021-8693(81)90334-3
- S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), no. 2, 229–259. MR 922654, DOI 10.1112/plms/s3-56.2.229
- George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), no. 1, 1–41. With an appendix by I. G. Macdonald. MR 1626461, DOI 10.1007/s002220050237
Bibliographic Information
- David Ben-Zvi
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Address at time of publication: Department of Mathematics, University of Texas, Austin, Texas 78712-0257
- Email: benzvi@math.uchicago.edu, benzvi@math.utexas.edu
- Thomas Nevins
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Email: nevins@umich.edu
- Received by editor(s): December 6, 2002
- Published electronically: September 24, 2003
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 155-179
- MSC (2000): Primary 14F10, 13N10, 16S32, 32C38
- DOI: https://doi.org/10.1090/S0894-0347-03-00439-9
- MathSciNet review: 2015332