The tame and the wild automorphisms of polynomial rings in three variables
Authors:
Ivan P. Shestakov and Ualbai U. Umirbaev
Journal:
J. Amer. Math. Soc. 17 (2004), 197-227
MSC (2000):
Primary 13F20, 13P10, 14H37; Secondary 14R10, 14R15
DOI:
https://doi.org/10.1090/S0894-0347-03-00440-5
Published electronically:
October 3, 2003
MathSciNet review:
2015334
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: A characterization of tame automorphisms of the algebra $A=F[x_1,x_2,x_3]$ of polynomials in three variables over a field $F$ of characteristic $0$ is obtained. In particular, it is proved that the well-known Nagata automorphism is wild. It is also proved that the tame and the wild automorphisms of $A$ are algorithmically recognizable.
- A. T. Abdykhalykov, A. A. Mikhalev, and U. U. Umirbaev, Automorphisms of two-generated free Leibniz algebras, Comm. Algebra 29 (2001), no. 7, 2953–2960. MR 1849114, DOI https://doi.org/10.1081/AGB-100104998
- Hyman Bass, Automorphisms of polynomial rings, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 762–771. MR 722665, DOI https://doi.org/10.1007/BFb0103749 Bass2 H. Bass, A non-triangular action of $G_a$ on $A^3$, J. of Pure and Appl. Algebra 33 (1984), no. 1, 1–5. Berg G. M. Bergman, Wild automorphisms of free P.I. algebras and some new identities, preprint.
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091 Czer A. G. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, I, II, Trans. Amer. Math. Soc. 160 (1971), 393–401; 171 (1972), 309–315. ;
- Vesselin Drensky and Jie-Tai Yu, Tame and wild coordinates of $K[z][x,y]$, Trans. Amer. Math. Soc. 353 (2001), no. 2, 519–537. MR 1709773, DOI https://doi.org/10.1090/S0002-9947-00-02617-9
- Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000. MR 1790619 Jung H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. reine angew. Math. 184(1942), 161–174. Kulk W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde. (3) 1 (1953), 33–41.
- L. G. Makar-Limanov, The automorphisms of the free algebra with two generators, Funkcional. Anal. i Priložen. 4 (1970), no. 3, 107–108 (Russian). MR 0271161
- Masayoshi Nagata, On automorphism group of $k[x,\,y]$, Kinokuniya Book-Store Co., Ltd., Tokyo, 1972. Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5. MR 0337962
- G. A. Noskov, The cancellation problem for a ring of polynomials, Sibirsk. Mat. Zh. 19 (1978), no. 6, 1413–1414, 1440 (Russian). MR 515197
- David Shannon and Moss Sweedler, Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms determine birational equivalence, J. Symbolic Comput. 6 (1988), no. 2-3, 267–273. Computational aspects of commutative algebra. MR 988417, DOI https://doi.org/10.1016/S0747-7171%2888%2980047-6
- I. P. Shestakov, Quantization of Poisson superalgebras and the specialty of Jordan superalgebras of Poisson type, Algebra i Logika 32 (1993), no. 5, 571–584, 587 (1994) (Russian, with Russian summary); English transl., Algebra and Logic 32 (1993), no. 5, 309–317 (1994). MR 1287006, DOI https://doi.org/10.1007/BF02261711 SU I. P. Shestakov, U. U. Umirbaev, Poisson brackets and two generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004).
- Martha K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), no. 2, 209–212. MR 1001475, DOI https://doi.org/10.1016/0022-4049%2889%2990158-8
- Ualbaĭ U. Umirbaev, Universal derivations and subalgebras of free algebras, Algebra (Krasnoyarsk, 1993) de Gruyter, Berlin, 1996, pp. 255–271. MR 1399590 Wright D. Wright, Algebras which resemble symmetric algebras, Ph.D. Thesis, Columbia Univ., New York, 1975.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 13F20, 13P10, 14H37, 14R10, 14R15
Retrieve articles in all journals with MSC (2000): 13F20, 13P10, 14H37, 14R10, 14R15
Additional Information
Ivan P. Shestakov
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo - SP, 05311–970, Brazil; Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
MR Author ID:
289548
Email:
shestak@ime.usp.br
Ualbai U. Umirbaev
Affiliation:
Department of Mathematics, Eurasian National University, Astana, 473021, Kazakhstan
Email:
umirbaev@yahoo.com
Keywords:
Rings of polynomials,
automorphisms,
subalgebras
Received by editor(s):
January 8, 2003
Published electronically:
October 3, 2003
Additional Notes:
The first author was supported by CNPq.
The second author was supported by the FAPESP Proc.00/06832-8.
Article copyright:
© Copyright 2003
American Mathematical Society