Almost global existence for quasilinear wave equations in three space dimensions
HTML articles powered by AMS MathViewer
- by Markus Keel, Hart F. Smith and Christopher D. Sogge;
- J. Amer. Math. Soc. 17 (2004), 109-153
- DOI: https://doi.org/10.1090/S0894-0347-03-00443-0
- Published electronically: September 30, 2003
- PDF | Request permission
Abstract:
We prove almost global existence for multiple speed quasilinear wave equations with quadratic nonlinearities in three spatial dimensions. We prove new results both for Minkowski space and also for nonlinear Dirichlet-wave equations outside of star shaped obstacles. The results for Minkowski space generalize a classical theorem of John and Klainerman. Our techniques only use the classical invariance of the wave operator under translations, spatial rotations, and scaling. We exploit the $O(|x|^{-1})$ decay of solutions of the wave equation as much as the $O(|t|^{-1})$ decay. Accordingly, a key step in our approach is to prove a pointwise estimate of solutions of the wave equation that gives $O(1/t)$ decay of solutions of the inhomogeneous linear wave equation in terms of a $O(1/|x|)$-weighted norm on the forcing term. A weighted $L^{2}$ space-time estimate for inhomogeneous wave equations is also important in making the spatial decay useful for the long-term existence argument.References
- Demetrios Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), no. 2, 267–282. MR 820070, DOI 10.1002/cpa.3160390205
- P. S. Datti, Nonlinear wave equations in exterior domains, Nonlinear Anal. 15 (1990), no. 4, 321–331. MR 1066388, DOI 10.1016/0362-546X(90)90140-C
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Paul Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems, Amer. J. Math. 117 (1995), no. 6, 1475–1505. MR 1363076, DOI 10.2307/2375027
- Nakao Hayashi, Global existence of small solutions to quadratic nonlinear wave equations in an exterior domain, J. Funct. Anal. 131 (1995), no. 2, 302–344. MR 1345034, DOI 10.1006/jfan.1995.1091
- Lars Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR 1466700
- Lars Hörmander, $L^1,\ L^\infty$ estimates for the wave operator, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 211–234. MR 956961
- Fritz John, Nonlinear wave equations, formation of singularities, University Lecture Series, vol. 2, American Mathematical Society, Providence, RI, 1990. Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, April 1989. MR 1066694, DOI 10.1090/ulect/002
- F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math. 37 (1984), no. 4, 443–455. MR 745325, DOI 10.1002/cpa.3160370403
- Markus Keel, Hart F. Smith, and Christopher D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal. 189 (2002), no. 1, 155–226. MR 1887632, DOI 10.1006/jfan.2001.3844 KSS2 M. Keel, H. Smith, and C. D. Sogge: Almost global existence for some semilinear wave equations, J. d’Anal. Math. 87 (2002), 265–279.
- Sergiu Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), no. 3, 321–332. MR 784477, DOI 10.1002/cpa.3160380305
- S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326. MR 837683
- Sergiu Klainerman and Thomas C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D, Comm. Pure Appl. Math. 49 (1996), no. 3, 307–321. MR 1374174, DOI 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H
- Mikhail Kovalyov, Long-time behaviour of solutions of a system of nonlinear wave equations, Comm. Partial Differential Equations 12 (1987), no. 5, 471–501. MR 883321, DOI 10.1080/03605308708820501
- P. D. Lax, C. S. Morawetz, and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math. 16 (1963), 477–486. MR 155091, DOI 10.1002/cpa.3160160407
- Peter D. Lax and Ralph S. Phillips, Scattering theory, 2nd ed., Pure and Applied Mathematics, vol. 26, Academic Press, Inc., Boston, MA, 1989. With appendices by Cathleen S. Morawetz and Georg Schmidt. MR 1037774
- Cathleen S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961), 561–568. MR 132908, DOI 10.1002/cpa.3160140327
- Cathleen S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A 306 (1968), 291–296. MR 234136, DOI 10.1098/rspa.1968.0151
- Cathleen S. Morawetz and Walter A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1–31. MR 303097, DOI 10.1002/cpa.3160250103
- Cathleen S. Morawetz, James V. Ralston, and Walter A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977), no. 4, 447–508. MR 509770, DOI 10.1002/cpa.3160300405
- Thomas C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2) 151 (2000), no. 2, 849–874. MR 1765712, DOI 10.2307/121050
- Thomas C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math. 123 (1996), no. 2, 323–342. MR 1374204, DOI 10.1007/s002220050030
- Thomas C. Sideris and Shu-Yi Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal. 33 (2001), no. 2, 477–488. MR 1857981, DOI 10.1137/S0036141000378966
- Hart F. Smith and Christopher D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), no. 11-12, 2171–2183. MR 1789924, DOI 10.1080/03605300008821581
- Christopher D. Sogge, Lectures on nonlinear wave equations, Monographs in Analysis, II, International Press, Boston, MA, 1995. MR 1715192 So2 C. D. Sogge: Global existence for nonlinear wave equations with multiple speeds, Proceedings of the 2001 Mount Holyoke Conference on Harmonic Analysis, pp. 353–366, Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003.
- Yoshihiro Shibata and Yoshio Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z. 191 (1986), no. 2, 165–199. MR 818663, DOI 10.1007/BF01164023
- Kazuyoshi Yokoyama, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan 52 (2000), no. 3, 609–632. MR 1760608, DOI 10.2969/jmsj/05230609
Bibliographic Information
- Markus Keel
- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Hart F. Smith
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- Christopher D. Sogge
- Affiliation: Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218
- MR Author ID: 164510
- Received by editor(s): September 16, 2002
- Published electronically: September 30, 2003
- Additional Notes: The authors were supported in part by the NSF
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 109-153
- MSC (2000): Primary 35L05, 35L10, 35L15, 35L20, 35L70
- DOI: https://doi.org/10.1090/S0894-0347-03-00443-0
- MathSciNet review: 2015331