On the size of $k$-fold sum and product sets of integers
HTML articles powered by AMS MathViewer
- by Jean Bourgain and Mei-Chu Chang
- J. Amer. Math. Soc. 17 (2004), 473-497
- DOI: https://doi.org/10.1090/S0894-0347-03-00446-6
- Published electronically: November 25, 2003
- PDF | Request permission
Abstract:
In this paper, we show that for all $b > 1$ there is a positive integer $k=k(b)$ such that if $A$ is an arbitrary finite set of integers, $|A|=N>2$, then either $|kA|>N^{b}$ or $|A^{(k)}|>N^{b}$. Here $kA$ (resp. $A^{(k)}$) denotes the $k$-fold sum (resp. product) of $A$. This fact is deduced from the following harmonic analysis result obtained in the paper. For all $q>2$ and $\epsilon >0$, there is a $\delta >0$ such that if $A$ satisfies $|A \cdot A|< N^{\delta }|A|$, then the $\lambda _q$-constant $\lambda _{q}(A)$ of $A$ (in the sense of W. Rudin) is at most $N^{\epsilon }$.References
- [B-K]B-K J. Bourgain, S. Konjagin, Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order, C. R. Acad. Sci. Paris Ser. I 337 (2003), 75–80.
[Ch]Ch M. Chang, Erdős- Szemerédi sum-product problem, Annals of Math. 157 (2003), 939-957.
- György Elekes, On the number of sums and products, Acta Arith. 81 (1997), no. 4, 365–367. MR 1472816, DOI 10.4064/aa-81-4-365-367
- György Elekes, Melvyn B. Nathanson, and Imre Z. Ruzsa, Convexity and sumsets, J. Number Theory 83 (2000), no. 2, 194–201. MR 1772612, DOI 10.1006/jnth.1999.2386
- P. Erdős and E. Szemerédi, On sums and products of integers, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 213–218. MR 820223
- W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), no. 3, 529–551. MR 1631259, DOI 10.1007/s000390050065
- S. V. Kislyakov, Banach spaces and classical harmonic analysis, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 871–898. MR 1863708, DOI 10.1016/S1874-5849(01)80022-X [K]K S. Konjagin, Private communication.
- Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets. MR 1477155, DOI 10.1007/978-1-4757-3845-2 [Ru]Ru W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. [So]So J. Solymosi, On the number of sums and products, preprint, 2003.
Bibliographic Information
- Jean Bourgain
- Affiliation: Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
- MR Author ID: 40280
- Email: bourgain@math.ias.edu
- Mei-Chu Chang
- Affiliation: Mathematics Department, University of California, Riverside, California 92521
- Email: mcc@math.ucr.edu
- Received by editor(s): September 5, 2003
- Published electronically: November 25, 2003
- © Copyright 2003 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 473-497
- MSC (1991): Primary 05A99
- DOI: https://doi.org/10.1090/S0894-0347-03-00446-6
- MathSciNet review: 2051619