Conformally invariant powers of the Laplacian — A complete nonexistence theorem
HTML articles powered by AMS MathViewer
- by A. Rod Gover and Kengo Hirachi;
- J. Amer. Math. Soc. 17 (2004), 389-405
- DOI: https://doi.org/10.1090/S0894-0347-04-00450-3
- Published electronically: January 9, 2004
- PDF | Request permission
Abstract:
We show that on conformal manifolds of even dimension $n\geq 4$ there is no conformally invariant natural differential operator between density bundles with leading part a power of the Laplacian $\Delta ^{k}$ for $k>n/2$. This shows that a large class of invariant operators on conformally flat manifolds do not generalise to arbitrarily curved manifolds and that the theorem of Graham, Jenne, Mason and Sparling, asserting the existence of curved version of $\Delta ^k$ for $1\le k\le n/2$, is sharp.References
- T. N. Bailey, M. G. Eastwood, and A. R. Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. 24 (1994), no. 4, 1191–1217. MR 1322223, DOI 10.1216/rmjm/1181072333
- Thomas P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742. MR 1316845, DOI 10.1090/S0002-9947-1995-1316845-2
- Andreas Čap and A. Rod Gover, Tractor bundles for irreducible parabolic geometries, Global analysis and harmonic analysis (Marseille-Luminy, 1999) Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 129–154 (English, with English and French summaries). MR 1822358
- Andreas Čap and A. Rod Gover, Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1511–1548. MR 1873017, DOI 10.1090/S0002-9947-01-02909-9
- Sun-Yung A. Chang and Paul C. Yang, Partial differential equations related to the Gauss-Bonnet-Chern integrand on 4-manifolds, Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000) Univ. Lecture Ser., vol. 27, Amer. Math. Soc., Providence, RI, 2002, pp. 1–30. MR 1922720, DOI 10.1090/ulect/027/01
- Michael Eastwood and Jan Slovák, Semiholonomic Verma modules, J. Algebra 197 (1997), no. 2, 424–448. MR 1483772, DOI 10.1006/jabr.1997.7136
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- A. Rod Gover, Aspects of parabolic invariant theory, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 25–47. The 18th Winter School “Geometry and Physics” (Srní, 1998). MR 1692257
- A. Rod Gover, Invariant theory and calculus for conformal geometries, Adv. Math. 163 (2001), no. 2, 206–257. MR 1864834, DOI 10.1006/aima.2001.1999 GoGr A. R. Gover and C. R. Graham, CR invariant powers of the sub-Laplacian, preprint arXiv:math.DG/0301092 GP A. R. Gover and L. J. Peterson, Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus, Comm. Math. Phys., 235 (2003) 339–378.
- C. Robin Graham, Conformally invariant powers of the Laplacian. II. Nonexistence, J. London Math. Soc. (2) 46 (1992), no. 3, 566–576. MR 1190439, DOI 10.1112/jlms/s2-46.3.566
- C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557–565. MR 1190438, DOI 10.1112/jlms/s2-46.3.557 GZ C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003) 89–118.
- Hans Plesner Jakobsen and Michele Vergne, Wave and Dirac operators, and representations of the conformal group, J. Functional Analysis 24 (1977), no. 1, 52–106. MR 439995, DOI 10.1016/0022-1236(77)90005-2
- Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields. MR 776784, DOI 10.1017/CBO9780511564048 T T. Y. Thomas, On conformal geometry, Proc. Natl. Acad. Sci. USA, 12 (1926) 352–359.
- V. Wünsch, Some new conformal covariants, Z. Anal. Anwendungen 19 (2000), no. 2, 339–357. MR 1768996, DOI 10.4171/ZAA/954
Bibliographic Information
- A. Rod Gover
- Affiliation: Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1, New Zealand
- MR Author ID: 335695
- Email: gover@math.auckland.ac.nz
- Kengo Hirachi
- Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Megro, Tokyo 153-8914, Japan
- Email: hirachi@ms.u-tokyo.ac.jp
- Received by editor(s): April 10, 2003
- Published electronically: January 9, 2004
- Additional Notes: The first author gratefully acknowledges support from the Royal Society of New Zealand via a Marsden Grant (grant no. 02-UOA-108). The second author gratefully acknowledges support from the Japan Society for the Promotion of Science.
- © Copyright 2004 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 389-405
- MSC (2000): Primary 53A30; Secondary 53A55, 35Q99
- DOI: https://doi.org/10.1090/S0894-0347-04-00450-3
- MathSciNet review: 2051616