Ideal membership in polynomial rings over the integers
HTML articles powered by AMS MathViewer
- by Matthias Aschenbrenner;
- J. Amer. Math. Soc. 17 (2004), 407-441
- DOI: https://doi.org/10.1090/S0894-0347-04-00451-5
- Published electronically: January 15, 2004
- PDF | Request permission
Abstract:
We present a new approach to the ideal membership problem for polynomial rings over the integers: given polynomials $f_0,f_1,\dots ,f_n\in \mathbb Z[X]$, where $X=(X_1,\dots ,X_N)$ is an $N$-tuple of indeterminates, are there $g_1,\dots ,g_n\in \mathbb Z[X]$ such that $f_0=g_1f_1+\cdots +g_nf_n$? We show that the degree of the polynomials $g_1,\dots ,g_n$ can be bounded by $(2d)^{2^{O(N\log (N+1))}}(h+1)$ where $d$ is the maximum total degree and $h$ the maximum height of the coefficients of $f_0,\dots ,f_n$. Some related questions, primarily concerning linear equations in $R[X]$, where $R$ is the ring of integers of a number field, are also treated.References
- coherent M. Aschenbrenner, Bounds and definability in polynomial rings, submitted.
kron —, Kronecker’s problem, in preparation.
Aschenbrenner-thesis —, Ideal Membership in Polynomial Rings over the Integers, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2001.
- Christine W. Ayoub, On constructing bases for ideals in polynomial rings over the integers, J. Number Theory 17 (1983), no. 2, 204–225. MR 716943, DOI 10.1016/0022-314X(83)90021-5
- Walter Baur, Rekursive Algebren mit Kettenbedingungen, Z. Math. Logik Grundlagen Math. 20 (1974), 37–46 (German). MR 351781, DOI 10.1002/malq.19740200105
- Thomas Becker and Volker Weispfenning, Gröbner bases, Graduate Texts in Mathematics, vol. 141, Springer-Verlag, New York, 1993. A computational approach to commutative algebra; In cooperation with Heinz Kredel. MR 1213453, DOI 10.1007/978-1-4612-0913-3
- Carlos A. Berenstein and Alain Yger, Bounds for the degrees in the division problem, Michigan Math. J. 37 (1990), no. 1, 25–43. MR 1042512, DOI 10.1307/mmj/1029004064
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Alicia Dickenstein, Noaï Fitchas, Marc Giusti, and Carmen Sessa, The membership problem for unmixed polynomial ideals is solvable in single exponential time, Discrete Appl. Math. 33 (1991), no. 1-3, 73–94. Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989). MR 1137741, DOI 10.1016/0166-218X(91)90109-A
- Harold M. Edwards, Kronecker’s views on the foundations of mathematics, The history of modern mathematics, Vol. I (Poughkeepsie, NY, 1989) Academic Press, Boston, MA, 1989, pp. 67–77. MR 1037796
- Trevor Evans, Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc. (2) 1 (1969), 399–403. MR 249344, DOI 10.1112/jlms/s2-1.1.399
- Giovanni Gallo and Bhubaneswar Mishra, A solution to Kronecker’s problem, Appl. Algebra Engrg. Comm. Comput. 5 (1994), no. 6, 343–370. MR 1302282, DOI 10.1007/BF01188747
- Patrizia Gianni, Barry Trager, and Gail Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput. 6 (1988), no. 2-3, 149–167. Computational aspects of commutative algebra. MR 988410, DOI 10.1016/S0747-7171(88)80040-3
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, ON, 1968. MR 229624
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Silvio Greco and Paolo Salmon, Topics in ${\mathfrak {m}}$-adic topologies, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 58, Springer-Verlag, New York-Berlin, 1971. MR 282956
- Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo, Limits to parallel computation: $\textrm {P}$-completeness theory, The Clarendon Press, Oxford University Press, New York, 1995. MR 1333600 Hentzelt-Noether K. Hentzelt and E. Noether, Zur Theorie der Polynomideale und Resultanten, Math. Ann. 88 (1923), 53–79. Hermann G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), 736–788.
- Abdelilah Kandri-Rody and Deepak Kapur, Computing a Gröbner basis of a polynomial ideal over a Euclidean domain, J. Symbolic Comput. 6 (1988), no. 1, 37–57. MR 961369, DOI 10.1016/S0747-7171(88)80020-8
- János Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), no. 4, 963–975. MR 944576, DOI 10.1090/S0894-0347-1988-0944576-7
- Teresa Krick, Luis Miguel Pardo, and Martín Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J. 109 (2001), no. 3, 521–598. MR 1853355, DOI 10.1215/S0012-7094-01-10934-4
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- B. Monien and R. Cori (eds.), STACS 89, Lecture Notes in Computer Science, vol. 349, Springer-Verlag, Berlin, 1989. MR 1027385, DOI 10.1007/BFb0028968
- Ernst W. Mayr and Albert R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math. 46 (1982), no. 3, 305–329. MR 683204, DOI 10.1016/0001-8708(82)90048-2
- Guillermo Moreno Socías, Length of polynomial ascending chains and primitive recursiveness, Math. Scand. 71 (1992), no. 2, 181–205. MR 1212703, DOI 10.7146/math.scand.a-12421
- Robbin O’Leary and Jeffrey D. Vaaler, Small solutions to inhomogeneous linear equations over number fields, Trans. Amer. Math. Soc. 336 (1993), no. 2, 915–931. MR 1094559, DOI 10.1090/S0002-9947-1993-1094559-2
- Patrice Philippon, Dénominateurs dans le théorème des zéros de Hilbert, Acta Arith. 58 (1991), no. 1, 1–25 (French). MR 1111087, DOI 10.4064/aa-58-1-1-25
- Bodo Renschuch, Beiträge zur konstruktiven Theorie der Polynomideale. XVII/1. Zur Hentzelt/Noether/Hermannschen Theorie der endlich vielen Schritte, Wiss. Z. Pädagog. Hochsch. “Karl Liebknecht” Potsdam 24 (1980), no. 1, 87–99 (German, with English and Russian summaries). MR 627148
- Fred Richman, Constructive aspects of Noetherian rings, Proc. Amer. Math. Soc. 44 (1974), 436–441. MR 416874, DOI 10.1090/S0002-9939-1974-0416874-9
- Damien Roy and Jeffrey Lin Thunder, Bases of number fields with small height, Rocky Mountain J. Math. 26 (1996), no. 3, 1089–1098. Symposium on Diophantine Problems (Boulder, CO, 1994). MR 1428488, DOI 10.1216/rmjm/1181072039
- Karsten Schmidt-Göttsch, Polynomial bounds in polynomial rings over fields, J. Algebra 125 (1989), no. 1, 164–180. MR 1012669, DOI 10.1016/0021-8693(89)90299-8
- A. Seidenberg, Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974), 273–313. MR 349648, DOI 10.1090/S0002-9947-1974-0349648-2
- Abraham Seidenberg, What is Noetherian?, Rend. Sem. Mat. Fis. Milano 44 (1974), 55–61 (1975) (English, with Italian summary). MR 416875, DOI 10.1007/BF02925651
- H. Simmons, The solution of a decision problem for several classes of rings, Pacific J. Math. 34 (1970), 547–557. MR 266755
- Martín Sombra, A sparse effective Nullstellensatz, Adv. in Appl. Math. 22 (1999), no. 2, 271–295. MR 1659402, DOI 10.1006/aama.1998.0633
- S. S. Wainer, A classification of the ordinal recursive functions, Arch. Math. Logik Grundlag. 13 (1970), 136–153. MR 294134, DOI 10.1007/BF01973619
Bibliographic Information
- Matthias Aschenbrenner
- Affiliation: Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720; Department of Mathematics, University of California at Berkeley, Evans Hall, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan St. (M/C 249), Chicago, Illinois 60607
- Email: maschenb@math.uic.edu
- Received by editor(s): May 2, 2003
- Published electronically: January 15, 2004
- Additional Notes: Partially supported by the Mathematical Sciences Research Institute
- © Copyright 2004 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 407-441
- MSC (2000): Primary 13P10; Secondary 11C08
- DOI: https://doi.org/10.1090/S0894-0347-04-00451-5
- MathSciNet review: 2051617