On the nonvanishing of the central value of the Rankin-Selberg $L$-functions
HTML articles powered by AMS MathViewer
- by David Ginzburg, Dihua Jiang and Stephen Rallis;
- J. Amer. Math. Soc. 17 (2004), 679-722
- DOI: https://doi.org/10.1090/S0894-0347-04-00455-2
- Published electronically: April 1, 2004
- PDF | Request permission
Abstract:
We characterize the nonvanishing of the central value of the Rankin-Selberg $L$-functions in terms of periods of Fourier-Jacobi type. This characterization is based on the Langlands philosophy on functoriality and on applications of invariant theory to automorphic representations. The result is the symplectic analog of the Gross-Prasad conjecture.References
- James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in $G(\textbf {Q})$, Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111
- James Arthur, A trace formula for reductive groups. II. Applications of a truncation operator, Compositio Math. 40 (1980), no. 1, 87–121. MR 558260 [BFSP04]BFSP04 Boecherer, S.; Furusawa, M.; Schulze-Pillot, R. On the global Gross-Prasad conjecture for Yoshida liftings. Contributions to Automorphic Forms, Geometry, and Number Theory. The Johns Hopkins University Press, 2004.
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $\textrm {GL}_N$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5–30. MR 1863734, DOI 10.1007/s10240-001-8187-z [CKPSS]CKPSS Cogdell, J.; Kim, H.; Piatetski-Shapiro, I.; Shahidi, F. Functoriality for the classical groups. To appear in Inst. Hautes Études Sci. Publ. Math. [CPS04]CPS04 Cogdell, J.; Piatetski-Shapiro, I. Remarks on Rankin-Selberg Convolutions. Contributions to Automorphic Forms, Geometry, and Number Theory. The Johns Hopkins University Press, 2004.
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Solomon Friedberg and Hervé Jacquet, Linear periods, J. Reine Angew. Math. 443 (1993), 91–139. MR 1241129, DOI 10.1515/crll.1993.443.91
- Masaaki Furusawa, On the theta lift from $\textrm {SO}_{2n+1}$ to $\widetilde \textrm {Sp}_n$, J. Reine Angew. Math. 466 (1995), 87–110. MR 1353315, DOI 10.1515/crll.1995.466.87
- Stephen Gelbart, Ilya Piatetski-Shapiro, and Stephen Rallis, Explicit constructions of automorphic $L$-functions, Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin, 1987. MR 892097, DOI 10.1007/BFb0078125
- David Ginzburg, Dihua Jiang, and Stephen Rallis, Nonvanishing of the central critical value of the third symmetric power $L$-functions, Forum Math. 13 (2001), no. 1, 109–132. MR 1808435, DOI 10.1515/form.2001.001 [GJR03]GJR03 Ginzburg, D.; Jiang, D.; Rallis, S. Periods of residue representations of ${\mathrm {SO}}_{2l}$. Accepted by Manuscripta Math. 2003. [GJR]GJR Ginzburg, D.; Jiang, D.; Rallis, S. Non-vanishing of the Central Value of the Rankin-Selberg L-functions. II. To appear in the volume commemorating the sixtieth birthday of Stephen Rallis.
- David Ginzburg, Stephen Rallis, and David Soudry, $L$-functions for symplectic groups, Bull. Soc. Math. France 126 (1998), no. 2, 181–244 (English, with English and French summaries). MR 1675971, DOI 10.24033/bsmf.2325
- David Ginzburg, Stephen Rallis, and David Soudry, On a correspondence between cuspidal representations of $\textrm {GL}_{2n}$ and $\widetilde \textrm {Sp}_{2n}$, J. Amer. Math. Soc. 12 (1999), no. 3, 849–907. MR 1671452, DOI 10.1090/S0894-0347-99-00300-8
- David Ginzburg, Stephen Rallis, and David Soudry, Lifting cusp forms on $\textrm {GL}_{2n}$ to $\tilde \textrm {Sp}_{2n}$: the unramified correspondence, Duke Math. J. 100 (1999), no. 2, 243–266. MR 1722953, DOI 10.1215/S0012-7094-99-10009-3
- David Ginzburg, Stephen Rallis, and David Soudry, On explicit lifts of cusp forms from $\textrm {GL}_m$ to classical groups, Ann. of Math. (2) 150 (1999), no. 3, 807–866. MR 1740991, DOI 10.2307/121057
- David Ginzburg, Stephen Rallis, and David Soudry, Generic automorphic forms on $\textrm {SO}(2n+1)$: functorial lift to $\textrm {GL}(2n)$, endoscopy, and base change, Internat. Math. Res. Notices 14 (2001), 729–764. MR 1846354, DOI 10.1155/S1073792801000381
- David Ginzburg, Stephen Rallis, and David Soudry, Endoscopic representations of ${\widetilde \textrm {Sp}}_{2n}$, J. Inst. Math. Jussieu 1 (2002), no. 1, 77–123. MR 1954940, DOI 10.1017/S1474748002000026 [GRS03]GRS03 Ginzburg, D.; Rallis, S; Soudry, D. On Fourier Coefficients of Automorphic Forms of Symplectic Groups. Manuscripta Math. 111 (2003), no. 1, 1–16. [GRS]GRS Ginzburg, D.; Rallis, S; Soudry, D. Constructions of CAP representations for symplectic groups using the descent method. To appear in the volume commemorating the sixtieth birthday of Stephen Rallis.
- Benedict H. Gross and Dipendra Prasad, On the decomposition of a representation of $\textrm {SO}_n$ when restricted to $\textrm {SO}_{n-1}$, Canad. J. Math. 44 (1992), no. 5, 974–1002. MR 1186476, DOI 10.4153/CJM-1992-060-8
- Benedict H. Gross and Dipendra Prasad, On irreducible representations of $\textrm {SO}_{2n+1}\times \textrm {SO}_{2m}$, Canad. J. Math. 46 (1994), no. 5, 930–950. MR 1295124, DOI 10.4153/CJM-1994-053-4
- Michael Harris, Hodge-de Rham structures and periods of automorphic forms, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 573–624. MR 1265564, DOI 10.1090/pspum/055.2/1265564
- Michael Harris and Stephen S. Kudla, The central critical value of a triple product $L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605–672. MR 1109355, DOI 10.2307/2944321
- Michael Harris and Stephen S. Kudla, Arithmetic automorphic forms for the nonholomorphic discrete series of $\textrm {GSp}(2)$, Duke Math. J. 66 (1992), no. 1, 59–121. MR 1159432, DOI 10.1215/S0012-7094-92-06603-8 [HK04]HK04 Harris, M.; Kudla, S. On a conjecture of Jacquet. Contributions to Automorphic Forms, Geometry, and Number Theory. The Johns Hopkins University Press, 2004.
- Tamotsu Ikeda, On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series, J. Math. Kyoto Univ. 34 (1994), no. 3, 615–636. MR 1295945, DOI 10.1215/kjm/1250518935
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Hervé Jacquet and Stephen Rallis, Symplectic periods, J. Reine Angew. Math. 423 (1992), 175–197. MR 1142486 [JLR04]JLR04 Jacquet, H.; Lapid, E.; Rallis, S. A spectral identity for skew symmetric matrices. Contributions to Automorphic Forms, Geometry, and Number Theory. The Johns Hopkins University Press, 2004.
- Dihua Jiang, $G_2$-periods and residual representations, J. Reine Angew. Math. 497 (1998), 17–46. MR 1617425, DOI 10.1515/crll.1998.039
- Dihua Jiang, Nonvanishing of the central critical value of the triple product $L$-functions, Internat. Math. Res. Notices 2 (1998), 73–84. MR 1604808, DOI 10.1155/S1073792898000075
- Dihua Jiang, On Jacquet’s conjecture: the split period case, Internat. Math. Res. Notices 3 (2001), 145–163. MR 1810691, DOI 10.1155/S1073792801000083 [JS03]JS03 Jiang, D.; Soudry, D. The local converse theorem for ${\mathrm {SO}}(2n+1)$ and applications. Ann. of Math. (2) 157 (2003), no. 3, 743–806. [JS04]JS04 Jiang, D.; Soudry, D. Generic Representations and the Local Langlands Reciprocity Law for $p$-adic ${\mathrm {SO}}(2n+1)$. Contributions to Automorphic Forms, Geometry, and Number Theory. The Johns Hopkins University Press, 2004.
- Henry H. Kim, Langlands-Shahidi method and poles of automorphic $L$-functions. II, Israel J. Math. 117 (2000), 261–284. MR 1760595, DOI 10.1007/BF02773573
- Henry H. Kim, Applications of Langlands’ functorial lift of odd orthogonal groups, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2775–2796. MR 1895203, DOI 10.1090/S0002-9947-02-02969-0
- Robert P. Langlands, Euler products, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. MR 419366
- Erez M. Lapid, On the nonnegativity of Rankin-Selberg $L$-functions at the center of symmetry, Int. Math. Res. Not. 2 (2003), 65–75. MR 1936579, DOI 10.1155/S1073792803204013
- Erez Lapid and Stephen Rallis, On the nonnegativity of $L({1\over 2},\pi )$ for $\textrm {SO}_{2n+1}$, Ann. of Math. (2) 157 (2003), no. 3, 891–917. MR 1983784
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752, DOI 10.24033/asens.1595
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168, DOI 10.1017/CBO9780511470905
- I. I. Pjateckij-Šapiro, Euler subgroups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted Press, New York-Toronto, Ont., 1975, pp. 597–620. MR 406935
- Dinakar Ramakrishnan, Pure motives and automorphic forms, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 411–446. MR 1265561, DOI 10.1090/pspum/055.2/1265561
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071 [S02]S02 Soudry, D. Langlands functoriality from classical groups to $GL_n$. To appear in Asterisque.
- J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur $\textrm {GL}(2)$, Compositio Math. 54 (1985), no. 2, 121–171 (French). MR 783510
Bibliographic Information
- David Ginzburg
- Affiliation: School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv, 69978 Israel
- Email: ginzburg@post.tau.ac.il
- Dihua Jiang
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 260974
- Email: dhjiang@math.umn.edu
- Stephen Rallis
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Email: haar@math.ohio-state.edu
- Received by editor(s): May 8, 2003
- Published electronically: April 1, 2004
- Additional Notes: The second author is partially supported by the NSF grant DMS-0098003, the Sloan Research Fellowship, and the McKnight Land-Grant Professorship (University of Minnesota).
- © Copyright 2004 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 679-722
- MSC (2000): Primary 11F67, 11F70, 22E46, 22E55
- DOI: https://doi.org/10.1090/S0894-0347-04-00455-2
- MathSciNet review: 2053953
Dedicated: Dedicated to Ilya I. Piatetski-Shapiro with admiration on the occasion of his 75th birthday