Integral motives and special values of zeta functions
HTML articles powered by AMS MathViewer
- by James S. Milne and Niranjan Ramachandran PDF
- J. Amer. Math. Soc. 17 (2004), 499-555 Request permission
Abstract:
For each field $k$, we define a category of rationally decomposed mixed motives with $\mathbb {Z}$-coefficients. When $k$ is finite, we show that the category is Tannakian, and we prove formulas relating the behaviour of zeta functions near integers to certain $\operatorname {Ext}$ groups.References
- Yves André, Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 5–49 (French). MR 1423019, DOI 10.1007/BF02698643
- Yves André and Bruno Kahn, Construction inconditionnelle de groupes de Galois motiviques, C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, 989–994 (French, with English and French summaries). MR 1913723, DOI 10.1016/S1631-073X(02)02384-1
- M. F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962), 25–45. MR 145560, DOI 10.1016/0040-9383(62)90094-0
- E. Ballico, F. Catanese, and C. Ciliberto (eds.), Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties. MR 1180332, DOI 10.1007/BFb0098332
- Spencer Bloch and Hélène Esnault, The coniveau filtration and non-divisibility for algebraic cycles, Math. Ann. 304 (1996), no. 2, 303–314. MR 1371769, DOI 10.1007/BF01446296 6 Brosnan, Patrick, Steenrod operations in Chow theory. Trans. Amer. Math. Soc. 355 (2003), no. 5, 1869–1903.
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI 10.1007/978-1-4613-9649-9_{3}
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Pierre Deligne, À quoi servent les motifs?, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 143–161 (French). MR 1265528, DOI 10.1090/pspum/055.1/1265528
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Michel Demazure, Lectures on $p$-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972. MR 0344261, DOI 10.1007/BFb0060741
- William G. Dwyer and Eric M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962, DOI 10.1090/S0002-9947-1985-0805962-2
- Torsten Ekedahl, Diagonal complexes and $F$-gauge structures, Travaux en Cours. [Works in Progress], Hermann, Paris, 1986. With a French summary. MR 860039
- Gerd Faltings and Gisbert Wüstholz (eds.), Rational points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig; distributed by Heyden & Son, Inc., Philadelphia, PA, 1984. Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn, 1983/1984. MR 766568, DOI 10.1007/978-3-322-83918-3
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- J.-M. Fontaine and L. Illusie, $p$-adic periods: a survey, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) Hindustan Book Agency, Delhi, 1993, pp. 57–93. MR 1274494
- Ofer Gabber, Sur la torsion dans la cohomologie $l$-adique d’une variété, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182 (French, with English summary). MR 725400
- Jean Giraud, Méthode de la descente, Bull. Soc. Math. France Mém. 2 (1964), viii+150 (French). MR 190142
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253, DOI 10.1007/978-3-662-62103-5
- Phillip Griffiths and Joe Harris, On the Noether-Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985), no. 1, 31–51. MR 779603, DOI 10.1007/BF01455794
- Masaki Hanamura, Mixed motives and algebraic cycles. I, Math. Res. Lett. 2 (1995), no. 6, 811–821. MR 1362972, DOI 10.4310/MRL.1995.v2.n6.a12
- Masaki Hanamura, Mixed motives and algebraic cycles. III, Math. Res. Lett. 6 (1999), no. 1, 61–82. MR 1682709, DOI 10.4310/MRL.1999.v6.n1.a5
- Howard L. Hiller, $\lambda$-rings and algebraic $K$-theory, J. Pure Appl. Algebra 20 (1981), no. 3, 241–266. MR 604319, DOI 10.1016/0022-4049(81)90062-1
- Annette Huber, Calculation of derived functors via Ind-categories, J. Pure Appl. Algebra 90 (1993), no. 1, 39–48. MR 1246272, DOI 10.1016/0022-4049(93)90134-F
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Uwe Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), no. 3, 447–452. MR 1150598, DOI 10.1007/BF01231898
- C. U. Jensen, Les foncteurs dérivés de $\underleftarrow {\mmlToken {mi}{lim}}$ et leurs applications en théorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091, DOI 10.1007/BFb0058395
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
- A. J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), no. 2, 301–333. MR 1650324, DOI 10.1007/s002220050266
- Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77. MR 332791, DOI 10.1007/BF01405203
- Steven L. Kleiman, The standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3–20. MR 1265519, DOI 10.1090/pspum/055.1/1265519
- Ch. Kratzer, $\lambda$-structure en $K$-théorie algébrique, Comment. Math. Helv. 55 (1980), no. 2, 233–254 (French). MR 576604, DOI 10.1007/BF02566684
- Serge Lang and John Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659–684. MR 106226, DOI 10.2307/2372778
- Marc Levine, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998. MR 1623774, DOI 10.1090/surv/057 34 Lichtenbaum, Stephen, The Weil-étale topology. Preprint (2002) (available at www.math. brown.edu/$\sim$slicht/) Compositio Math. (to appear).
- J. S. Milne, Extensions of abelian varieties defined over a finite field, Invent. Math. 5 (1968), 63–84. MR 229652, DOI 10.1007/BF01404538
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), no. 2, 297–360. MR 833360, DOI 10.2307/2374676
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- J. S. Milne, Motives over finite fields, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 401–459. MR 1265538, DOI 10.1093/mnras/270.1.106
- J. S. Milne, Lefschetz motives and the Tate conjecture, Compositio Math. 117 (1999), no. 1, 45–76. MR 1692999, DOI 10.1023/A:1000776613765 41 Milne, J. S., Gerbes and abelian motives, preprint 2003, arXiv:math.AG/0301304.
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- F. Oort, Yoneda extensions in abelian categories, Math. Ann. 153 (1964), 227–235. MR 162836, DOI 10.1007/BF01360318
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Jan-Erik Roos, Bidualité et structure des foncteurs dérivés de $\underleftarrow {\mmlToken {mi}{lim}}$ dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris 254 (1962), 1556–1558 (French). MR 136639
- Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
- Chad Schoen, An integral analog of the Tate conjecture for one-dimensional cycles on varieties over finite fields, Math. Ann. 311 (1998), no. 3, 493–500. MR 1637931, DOI 10.1007/s002080050197
- Jean-Pierre Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37–52 (French). MR 231831, DOI 10.1007/BF02684589
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, DOI 10.1007/BF01406843
- Christophe Soulé, $K$-theory and values of zeta functions, Algebraic $K$-theory and its applications (Trieste, 1997) World Sci. Publ., River Edge, NJ, 1999, pp. 255–283. MR 1715878
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI 10.1007/BF01404549
- Séminaire Bourbaki. Vol. 9, Société Mathématique de France, Paris, 1995 (French). Années 1964/65-1965/66. [Years 1964/65-1965/66]; Exposés 277–312; Reprint of the edition published by W. A. Benjamin, New York-Amsterdam, 1966 [ MR0197249 (33 #5420l); MR0205779 (34 #5605)]. MR 1610880
- John Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, DOI 10.1007/BF01390012
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI 10.1090/pspum/055.1/1265523
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
- Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, Princeton, NJ, 2000. MR 1764197
- Ju. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 272–277, 471 (Russian). MR 0371897
Additional Information
- James S. Milne
- Affiliation: 2679 Bedford Road, Ann Arbor, Michigan 48104
- MR Author ID: 125025
- Email: math@jmilne.org
- Niranjan Ramachandran
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Email: atma@math.umd.edu
- Received by editor(s): June 11, 2002
- Published electronically: April 26, 2004
- Additional Notes: The first author received support from the National Science Foundation and the second author from MPIM (Bonn) and a GRB Summer Grant (UMD)
- © Copyright 2004 American Mathematical Society
- Journal: J. Amer. Math. Soc. 17 (2004), 499-555
- MSC (2000): Primary 11G09; Secondary 14F42, 14G10
- DOI: https://doi.org/10.1090/S0894-0347-04-00458-8
- MathSciNet review: 2053950