Integral motives and special values of zeta functions
Authors:
James S. Milne and Niranjan Ramachandran
Journal:
J. Amer. Math. Soc. 17 (2004), 499-555
MSC (2000):
Primary 11G09; Secondary 14F42, 14G10
DOI:
https://doi.org/10.1090/S0894-0347-04-00458-8
Published electronically:
April 26, 2004
MathSciNet review:
2053950
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For each field $k$, we define a category of rationally decomposed mixed motives with $\mathbb {Z}$-coefficients. When $k$ is finite, we show that the category is Tannakian, and we prove formulas relating the behaviour of zeta functions near integers to certain $\operatorname {Ext}$ groups.
- Yves André, Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 5–49 (French). MR 1423019
- Yves André and Bruno Kahn, Construction inconditionnelle de groupes de Galois motiviques, C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, 989–994 (French, with English and French summaries). MR 1913723, DOI https://doi.org/10.1016/S1631-073X%2802%2902384-1
- M. F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962), 25–45. MR 145560, DOI https://doi.org/10.1016/0040-9383%2862%2990094-0
- E. Ballico, F. Catanese, and C. Ciliberto (eds.), Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties. MR 1180332
- Spencer Bloch and Hélène Esnault, The coniveau filtration and non-divisibility for algebraic cycles, Math. Ann. 304 (1996), no. 2, 303–314. MR 1371769, DOI https://doi.org/10.1007/BF01446296 6 Brosnan, Patrick, Steenrod operations in Chow theory. Trans. Amer. Math. Soc. 355 (2003), no. 5, 1869–1903.
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over ${\bf Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI https://doi.org/10.1007/978-1-4613-9649-9_3
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Pierre Deligne, À quoi servent les motifs?, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 143–161 (French). MR 1265528, DOI https://doi.org/10.1090/pspum/055.1/1265528
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- Michel Demazure, Lectures on $p$-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972. MR 0344261
- William G. Dwyer and Eric M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962, DOI https://doi.org/10.1090/S0002-9947-1985-0805962-2
- Torsten Ekedahl, Diagonal complexes and $F$-gauge structures, Travaux en Cours. [Works in Progress], Hermann, Paris, 1986. With a French summary. MR 860039
- Gerd Faltings and Gisbert Wüstholz (eds.), Rational points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig; distributed by Heyden & Son, Inc., Philadelphia, PA, 1984. Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn, 1983/1984. MR 766568
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- J.-M. Fontaine and L. Illusie, $p$-adic periods: a survey, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989) Hindustan Book Agency, Delhi, 1993, pp. 57–93. MR 1274494
- Ofer Gabber, Sur la torsion dans la cohomologie $l$-adique d’une variété, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182 (French, with English summary). MR 725400
- Jean Giraud, Méthode de la descente, Bull. Soc. Math. France Mém. 2 (1964), viii+150 (French). MR 190142
- Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
- Phillip Griffiths and Joe Harris, On the Noether-Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985), no. 1, 31–51. MR 779603, DOI https://doi.org/10.1007/BF01455794
- Masaki Hanamura, Mixed motives and algebraic cycles. I, Math. Res. Lett. 2 (1995), no. 6, 811–821. MR 1362972, DOI https://doi.org/10.4310/MRL.1995.v2.n6.a12
- Masaki Hanamura, Mixed motives and algebraic cycles. III, Math. Res. Lett. 6 (1999), no. 1, 61–82. MR 1682709, DOI https://doi.org/10.4310/MRL.1999.v6.n1.a5
- Howard L. Hiller, $\lambda $-rings and algebraic $K$-theory, J. Pure Appl. Algebra 20 (1981), no. 3, 241–266. MR 604319, DOI https://doi.org/10.1016/0022-4049%2881%2990062-1
- Annette Huber, Calculation of derived functors via Ind-categories, J. Pure Appl. Algebra 90 (1993), no. 1, 39–48. MR 1246272, DOI https://doi.org/10.1016/0022-4049%2893%2990134-F 24 Jacobson, Nathan, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943.
- Uwe Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), no. 3, 447–452. MR 1150598, DOI https://doi.org/10.1007/BF01231898
- C. U. Jensen, Les foncteurs dérivés de $\varprojlim $ et leurs applications en théorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
- A. J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), no. 2, 301–333. MR 1650324, DOI https://doi.org/10.1007/s002220050266
- Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77. MR 332791, DOI https://doi.org/10.1007/BF01405203
- Steven L. Kleiman, The standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3–20. MR 1265519, DOI https://doi.org/10.1090/pspum/055.1/1265519
- Ch. Kratzer, $\lambda $-structure en $K$-théorie algébrique, Comment. Math. Helv. 55 (1980), no. 2, 233–254 (French). MR 576604, DOI https://doi.org/10.1007/BF02566684
- Serge Lang and John Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659–684. MR 106226, DOI https://doi.org/10.2307/2372778
- Marc Levine, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998. MR 1623774 34 Lichtenbaum, Stephen, The Weil-étale topology. Preprint (2002) (available at www.math. brown.edu/$\sim$slicht/) Compositio Math. (to appear).
- J. S. Milne, Extensions of abelian varieties defined over a finite field, Invent. Math. 5 (1968), 63–84. MR 229652, DOI https://doi.org/10.1007/BF01404538
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), no. 2, 297–360. MR 833360, DOI https://doi.org/10.2307/2374676
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- J. S. Milne, Motives over finite fields, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 401–459. MR 1265538, DOI https://doi.org/10.1093/mnras/270.1.106
- J. S. Milne, Lefschetz motives and the Tate conjecture, Compositio Math. 117 (1999), no. 1, 45–76. MR 1692999, DOI https://doi.org/10.1023/A%3A1000776613765 41 Milne, J. S., Gerbes and abelian motives, preprint 2003, arXiv:math.AG/0301304.
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- F. Oort, Yoneda extensions in abelian categories, Math. Ann. 153 (1964), 227–235. MR 162836, DOI https://doi.org/10.1007/BF01360318
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI https://doi.org/10.2307/1970825
- Jan-Erik Roos, Bidualité et structure des foncteurs dérivés de $\varprojlim $ dans la catégorie des modules sur un anneau régulier, C. R. Acad. Sci. Paris 254 (1962), 1556–1558 (French). MR 136639
- Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
- Chad Schoen, An integral analog of the Tate conjecture for one-dimensional cycles on varieties over finite fields, Math. Ann. 311 (1998), no. 3, 493–500. MR 1637931, DOI https://doi.org/10.1007/s002080050197
- Jean-Pierre Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37–52 (French). MR 231831
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, DOI https://doi.org/10.1007/BF01406843
- Christophe Soulé, $K$-theory and values of zeta functions, Algebraic $K$-theory and its applications (Trieste, 1997) World Sci. Publ., River Edge, NJ, 1999, pp. 255–283. MR 1715878
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI https://doi.org/10.1007/BF01404549
- Séminaire Bourbaki. Vol. 9, Société Mathématique de France, Paris, 1995 (French). Années 1964/65-1965/66. [Years 1964/65-1965/66]; Exposés 277–312; Reprint of the edition published by W. A. Benjamin, New York-Amsterdam, 1966 [ MR0197249 (33 #5420l); MR0205779 (34 #5605)]. MR 1610880
- John Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, DOI https://doi.org/10.1007/BF01390012
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI https://doi.org/10.1090/pspum/055.1/1265523
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
- Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143, Princeton University Press, Princeton, NJ, 2000. MR 1764197
- Ju. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 272–277, 471 (Russian). MR 0371897
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11G09, 14F42, 14G10
Retrieve articles in all journals with MSC (2000): 11G09, 14F42, 14G10
Additional Information
James S. Milne
Affiliation:
2679 Bedford Road, Ann Arbor, Michigan 48104
MR Author ID:
125025
Email:
math@jmilne.org
Niranjan Ramachandran
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email:
atma@math.umd.edu
Received by editor(s):
June 11, 2002
Published electronically:
April 26, 2004
Additional Notes:
The first author received support from the National Science Foundation and the second author from MPIM (Bonn) and a GRB Summer Grant (UMD)
Article copyright:
© Copyright 2004
American Mathematical Society