Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives
HTML articles powered by AMS MathViewer

by K. Bromberg PDF
J. Amer. Math. Soc. 17 (2004), 783-826 Request permission

Abstract:

Given a geometrically finite hyperbolic cone-manifold, with the cone-singularity sufficiently short, we construct a one-parameter family of cone-manifolds decreasing the cone-angle to zero. We also control the geometry of this one-parameter family via the Schwarzian derivative of the projective boundary and the length of closed geodesics.
References
    [And]Anderson:projective C. G. Anderson. Projective structures on Riemann surfaces and developing maps to $\mathbb {H}^3$ and $\mathbb {C}P^n$. Preprint (1999).
  • James W. Anderson and Richard D. Canary, Cores of hyperbolic $3$-manifolds and limits of Kleinian groups, Amer. J. Math. 118 (1996), no. 4, 745–779. MR 1400058, DOI 10.1353/ajm.1996.0031
  • James W. Anderson and Richard D. Canary, Cores of hyperbolic $3$-manifolds and limits of Kleinian groups. II, J. London Math. Soc. (2) 61 (2000), no. 2, 489–505. MR 1760675, DOI 10.1112/S0024610799008595
  • Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
  • Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570–600. MR 297992, DOI 10.2307/1970638
  • [BB]Brock:Bromberg:density J. Brock and K. Bromberg. On the density of geometrically finite Kleinian groups. To appear Acta Math.
  • Jeffrey Brock, Kenneth Bromberg, Richard Evans, and Juan Souto, Tameness on the boundary and Ahlfors’ measure conjecture, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 145–166. MR 2031201, DOI 10.1007/s10240-003-0018-y
  • K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004), 143–170. MR 2057249, DOI 10.1023/B:GEOM.0000024664.84428.e7
  • [Br2]Bromberg:projective K. Bromberg. Projective structures with degenerate holonomy and the Bers’ density conjecture. 2002 preprint available at front.math.ucdavis.edu/math.GT/0211402.
  • R. D. Canary, The conformal boundary and the boundary of the convex core, Duke Math. J. 106 (2001), no. 1, 193–207. MR 1810370, DOI 10.1215/S0012-7094-01-10616-9
  • Richard D. Canary, Marc Culler, Sa’ar Hersonsky, and Peter B. Shalen, Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups, J. Differential Geom. 64 (2003), no. 1, 57–109. MR 2015044
  • R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
  • [CH]Canary:Hersonsky:cusps R. D. Canary and S. Hersonsky. Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3-manifolds. To appear Amer. J. of Math.
  • Richard D. Canary and Yair N. Minsky, On limits of tame hyperbolic $3$-manifolds, J. Differential Geom. 43 (1996), no. 1, 1–41. MR 1424418
  • [Ep]Epstein:horospheres C. Epstein. Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space. preprint. [Ev]Evans:tameness R. Evans. Tameness persists. To appear Amer. J. Math.
  • Craig D. Hodgson and Steven P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), no. 1, 1–59. MR 1622600
  • Craig D. Hodgson and Steven P. Kerckhoff, Harmonic deformations of hyperbolic 3-manifolds, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003, pp. 41–73. MR 2044544, DOI 10.1017/CBO9780511542817.003
  • [HK3]Hodgson:Kerckhoff:tube C. Hodgson and S. Kerckhoff. The shape of hyperbolic Dehn surgery space. In preparation. [HK4]Hodgson:Kerckhoff:dehn C. Hodgson and S. Kerckhoff. Universal bounds for hyperbolic Dehn surgery. 2002 preprint available at front.math.ucdavis.edu/math.GT/0204345.
  • Shigeru Kodani, Convergence theorem for Riemannian manifolds with boundary, Compositio Math. 75 (1990), no. 2, 171–192. MR 1065204
  • Sadayoshi Kojima, Deformations of hyperbolic $3$-cone-manifolds, J. Differential Geom. 49 (1998), no. 3, 469–516. MR 1669649
  • Curt McMullen, Cusps are dense, Ann. of Math. (2) 133 (1991), no. 1, 217–247. MR 1087348, DOI 10.2307/2944328
  • Jean-Pierre Otal, Les géodésiques fermées d’une variété hyperbolique en tant que nœuds, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003, pp. 95–104 (French, with English and French summaries). MR 2044546, DOI 10.1017/CBO9780511542817.005
  • [RS]Rivin:Schlenker:schlafli I. Rivin and J-M. Schlenker. On the Schläfli differential formula. 1998 preprint available at front.math.ucdavis.edu/math.DG/0001176.
  • Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i–xii and 289–538. MR 1079031
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 30F40, 57M50
  • Retrieve articles in all journals with MSC (2000): 30F40, 57M50
Additional Information
  • K. Bromberg
  • Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
  • Address at time of publication: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
  • Email: bromberg@math.utah.edu
  • Received by editor(s): December 10, 2002
  • Published electronically: July 21, 2004
  • Additional Notes: Supported by a grant from the NSF
  • © Copyright 2004 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 17 (2004), 783-826
  • MSC (2000): Primary 30F40, 57M50
  • DOI: https://doi.org/10.1090/S0894-0347-04-00462-X
  • MathSciNet review: 2083468