Real bounds, ergodicity and negative Schwarzian for multimodal maps
HTML articles powered by AMS MathViewer
- by Sebastian van Strien and Edson Vargas;
- J. Amer. Math. Soc. 17 (2004), 749-782
- DOI: https://doi.org/10.1090/S0894-0347-04-00463-1
- Published electronically: August 27, 2004
- PDF | Request permission
Erratum: J. Amer. Math. Soc. 20 (2007), 267-268.
Abstract:
We consider smooth multimodal maps which have finitely many non-flat critical points. We prove the existence of real bounds. From this we obtain a new proof for the non-existence of wandering intervals, derive extremely useful improved Koebe principles, show that high iterates have ‘negative Schwarzian derivative’ and give results on ergodic properties of the map. One of the main complications in the proofs is that we allow $f$ to have inflection points.References
- A. M. Blokh and M. Yu. Lyubich, Measure and dimension of solenoidal attractors of one-dimensional dynamical systems, Comm. Math. Phys. 127 (1990), no. 3, 573–583. MR 1040895, DOI 10.1007/BF02104502
- A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of $S$-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 5, 545–573. MR 1132757, DOI 10.24033/asens.1636
- A. M. Blokh and M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 751–758. MR 1036906, DOI 10.1017/S0143385700005319
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI 10.2307/2118654
- O. S. Kozlovski, Axiom A maps are dense in the space of unimodal maps in the $C^k$ topology, Ann. of Math. (2) 157 (2003), no. 1, 1–43. MR 1954263, DOI 10.4007/annals.2003.157.1
- O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math. (2) 152 (2000), no. 3, 743–762. MR 1815700, DOI 10.2307/2661353 KSS O. Kozlovski, W. Shen and S. van Strien, Rigidity for real polynomials, Preprint 2003, available from http://maths.warwick.ac.uk/$\sim$strien/Publications
- Genadi Levin, Bounds for maps of an interval with one reflecting critical point. I, Fund. Math. 157 (1998), no. 2-3, 287–298. Dedicated to the memory of Wiesław Szlenk. MR 1636895, DOI 10.4064/fm-157-2-3-287-298
- Genadi Levin and Sebastian van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. (2) 147 (1998), no. 3, 471–541. MR 1637647, DOI 10.2307/120958
- Genadi Levin and Sebastian van Strien, Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math. 141 (2000), no. 2, 399–465. MR 1775218, DOI 10.1007/s002220000075
- M. Yu. Lyubich, Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 737–749. MR 1036905, DOI 10.1017/S0143385700005307 lyub2 M.Yu. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems, Stony Brook preprint 1991/11.
- Ricardo Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), no. 4, 495–524. MR 806250, DOI 10.1007/BF01217727
- Marco Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 331–349. MR 1279474, DOI 10.1017/S0143385700007902
- M. Martens, W. de Melo, and S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), no. 3-4, 273–318. MR 1161268, DOI 10.1007/BF02392981
- W. de Melo and S. van Strien, A structure theorem in one-dimensional dynamics, Ann. of Math. (2) 129 (1989), no. 3, 519–546. MR 997312, DOI 10.2307/1971516
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Weixiao Shen, Bounds for one-dimensional maps without inflection critical points, J. Math. Sci. Univ. Tokyo 10 (2003), no. 1, 41–88. MR 1963798
- Weixiao Shen, On the measurable dynamics of real rational functions, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 957–983. MR 1992673, DOI 10.1017/S0143385702001311
- Weixiao Shen, On the metric properties of multimodal interval maps and $C^2$ density of Axiom A, Invent. Math. 156 (2004), no. 2, 301–403. MR 2052610, DOI 10.1007/s00222-003-0343-2
- Grzegorz Świa̧tek and Edson Vargas, Decay of geometry in the cubic family, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1311–1329. MR 1653256, DOI 10.1017/S0143385798117558
- Sebastian van Strien, Hyperbolicity and invariant measures for general $C^2$ interval maps satisfying the Misiurewicz condition, Comm. Math. Phys. 128 (1990), no. 3, 437–495. MR 1045879, DOI 10.1007/BF02096868
- E. Vargas, Measure of minimal sets of polymodal maps, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 159–178. MR 1375131, DOI 10.1017/S0143385700008750
Bibliographic Information
- Sebastian van Strien
- Affiliation: Department of Mathematics, Warwick University, Coventry CV4 7AL, England
- Email: strien@maths.warwick.ac.uk
- Edson Vargas
- Affiliation: Department of Mathematics, University of São Paulo, São Paulo, Brazil
- Email: vargas@ime.usp.br
- Received by editor(s): May 1, 2002
- Published electronically: August 27, 2004
- Additional Notes: The first author was partially supported by EPSRC grant GR/R73171/01.
The second author was partially supported by CNPq-Brasil, Grant #300557/89-2(RN) - © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 17 (2004), 749-782
- MSC (2000): Primary 37Exx, 37Fxx
- DOI: https://doi.org/10.1090/S0894-0347-04-00463-1
- MathSciNet review: 2083467