A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature
HTML articles powered by AMS MathViewer
Abstract:
In this paper, we derive a new monotonicity formula for the plurisubharmonic functions/positive (1,1) currents on complete Kähler manifolds with nonnegative bisectional curvature. As applications we derive the sharp estimates for the dimension of the spaces of holomorphic functions (sections) with polynomial growth, which, in particular, partially solve a conjecture of Yau. The methods used in this paper, without the assumption of maximum volume of growth, as observed recently by Chen, Fu, Yin, and Zhu, provide a complete solution to Yau’s conjecture.References
- Aldo Andreotti and Giuseppe Tomassini, Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 85–104. MR 0265632
- Aldo Andreotti and Edoardo Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130. MR 175148, DOI 10.1007/BF02684398
- Enrico Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267–287. MR 306201, DOI 10.1007/BF01418775
- R. L. Bishop and S. I. Goldberg, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119–122. MR 172221, DOI 10.1090/S0002-9939-1965-0172221-6
- Huai Dong Cao, On Harnack’s inequalities for the Kähler-Ricci flow, Invent. Math. 109 (1992), no. 2, 247–263. MR 1172691, DOI 10.1007/BF01232027 [CFYZ]CFYZ B. Chen, X. Fu, L. Yin and X-P. Zhu, Sharp dimension estimates of holomorphic functions and rigidity, arXiv.math.DG/0311164.
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Bennett Chow, Interpolating between Li-Yau’s and Hamilton’s Harnack inequalities on a surface, J. Partial Differential Equations 11 (1998), no. 2, 137–140. MR 1626999
- Bennett Chow and Richard S. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math. 129 (1997), no. 2, 213–238. MR 1465325, DOI 10.1007/s002220050162 [CN]CN B. Chow and L. Ni, A new matrix LYH estimate for Kähler-Ricci flow and the interpolation with entropy monotonicity, in preparation.
- Tobias H. Colding and William P. Minicozzi II, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998), no. 2, 257–298. MR 1608571, DOI 10.1007/s002220050204
- Jean-Pierre Demailly, $L^2$ vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1–97. MR 1603616, DOI 10.1007/BFb0094302
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- Harold Donnelly, Harmonic functions on manifolds of nonnegative Ricci curvature, Internat. Math. Res. Notices 8 (2001), 429–434. MR 1827086, DOI 10.1155/S1073792801000216
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- R. E. Greene and H. Wu, Analysis on noncompact Kähler manifolds, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 69–100. MR 0460699
- Richard S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225–243. MR 1198607
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639 [HS]HS G. Huisken and C. Sinestrari, Surgeries on mean curvature flow of hypersurfaces, work in progress. [KL]KL L. Karp and P. Li, The heat equation on complete Riemannian manifolds, unpublished.
- James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR 0302937
- Peter Li, Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett. 2 (1995), no. 1, 79–94. MR 1312979, DOI 10.4310/MRL.1995.v2.n1.a8
- Peter Li, Curvature and function theory on Riemannian manifolds, Surveys in differential geometry, Surv. Differ. Geom., vol. 7, Int. Press, Somerville, MA, 2000, pp. 375–432. MR 1919432, DOI 10.4310/SDG.2002.v7.n1.a13
- Peter Li and Richard Schoen, $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984), no. 3-4, 279–301. MR 766266, DOI 10.1007/BF02392380
- Peter Li and Luen-Fai Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom. 29 (1989), no. 2, 421–425. MR 982183
- Peter Li and Luen-Fai Tam, Complete surfaces with finite total curvature, J. Differential Geom. 33 (1991), no. 1, 139–168. MR 1085138
- Peter Li, Luen-Fai Tam, and Jiaping Wang, Sharp bounds for the Green’s function and the heat kernel, Math. Res. Lett. 4 (1997), no. 4, 589–602. MR 1470428, DOI 10.4310/MRL.1997.v4.n4.a13
- Peter Li and Jiaping Wang, Counting massive sets and dimensions of harmonic functions, J. Differential Geom. 53 (1999), no. 2, 237–278. MR 1802723
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Ngaiming Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112 (1984), no. 2, 197–250 (English, with French summary). MR 788968
- Ngaiming Mok, Yum Tong Siu, and Shing Tung Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Compositio Math. 44 (1981), no. 1-3, 183–218. MR 662462
- Lei Ni, The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds, Indiana Univ. Math. J. 51 (2002), no. 3, 679–704. MR 1911050, DOI 10.1512/iumj.2002.51.2175 [N2]N2 L. Ni, Monotonicity and Kähler-Ricci flow, to appear in Contemp. Math., arXiv: math.DG/ 0211214.
- Lei Ni, The entropy formula for linear heat equation, J. Geom. Anal. 14 (2004), no. 1, 87–100. MR 2030576, DOI 10.1007/BF02921867
- Lei Ni, Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds, Math. Z. 232 (1999), no. 2, 331–355. MR 1718630, DOI 10.1007/s002090050518
- Terrence Napier and Mohan Ramachandran, The $L^2\ \overline \partial$-method, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Amer. Math. Soc. 11 (1998), no. 2, 375–396. MR 1477601, DOI 10.1090/S0894-0347-98-00257-4
- Lei Ni, Yuguang Shi, and Luen-Fai Tam, Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds, J. Differential Geom. 57 (2001), no. 2, 339–388. MR 1879230
- Lei Ni and Luen-Fai Tam, Plurisubharmonic functions and the Kähler-Ricci flow, Amer. J. Math. 125 (2003), no. 3, 623–654. MR 1981036, DOI 10.1353/ajm.2003.0019
- Lei Ni and Luen-Fai Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 (2003), no. 3, 457–524. MR 2032112 [P]P G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/ 0211159.
- Igor R. Shafarevich, Basic algebraic geometry. 2, 2nd ed., Springer-Verlag, Berlin, 1994. Schemes and complex manifolds; Translated from the 1988 Russian edition by Miles Reid. MR 1328834
- Yum Tong Siu, Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), no. 4, 481–512. MR 477104, DOI 10.1090/S0002-9904-1978-14483-8
- H. Wu, Polynomial functions on complete Kähler manifolds, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 601–610. MR 1128575, DOI 10.1090/pspum/052.2/1128575 [Y]Y S. T. Yau, Open problems in geometry, Lectures on Differential Geometry, by Schoen and Yau 1 (1994), 365–404.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. 1, Graduate Texts in Mathematics, No. 28, Springer-Verlag, New York-Heidelberg-Berlin, 1975. With the cooperation of I. S. Cohen; Corrected reprinting of the 1958 edition. MR 0384768
Bibliographic Information
- Lei Ni
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, Californiz 92093
- MR Author ID: 640255
- Email: lni@math.ucsd.edu
- Received by editor(s): July 22, 2003
- Published electronically: August 27, 2004
- Additional Notes: The author’s research was partially supported by NSF grant DMS-0328624, USA
- © Copyright 2004 by the author. All rights reserved.
- Journal: J. Amer. Math. Soc. 17 (2004), 909-946
- MSC (2000): Primary 58J35, 53C55
- DOI: https://doi.org/10.1090/S0894-0347-04-00465-5
- MathSciNet review: 2083471