Multidimensional viscous shocks I: Degenerate symmetrizers and long time stability
HTML articles powered by AMS MathViewer
- by Olivier Guès, Guy Métivier, Mark Williams and Kevin Zumbrun;
- J. Amer. Math. Soc. 18 (2005), 61-120
- DOI: https://doi.org/10.1090/S0894-0347-04-00470-9
- Published electronically: October 14, 2004
- PDF | Request permission
Abstract:
We use energy estimates to study the long time stability of multidimensional planar viscous shocks $\psi (x_1)$ for systems of conservation laws. Stability is proved for both zero mass and nonzero mass perturbations, and some of the results include rates of decay in time. Shocks of any strength are allowed, subject to an appropriate Evans function condition. The main tools are a conjugation argument that allows us to replace the eigenvalue equation by a problem in which the $x_1$ dependence of the coefficients is removed and degenerate Kreiss-type symmetrizers designed to cope with the vanishing of the Evans function for zero frequency.References
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, MA, 1965. MR 190463
- Jacques Chazarain and Alain Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam-New York, 1982. Translated from the French. MR 678605
- Jacques Francheteau and Guy Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 8, 725–728 (French, with English and French summaries). MR 1660029, DOI 10.1016/S0764-4442(98)80159-6
- Heinrich Freistühler and Tai-Ping Liu, Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws, Comm. Math. Phys. 153 (1993), no. 1, 147–158. MR 1213739, DOI 10.1007/BF02099043
- H. Freistühler and P. Szmolyan, Spectral stability of small shock waves, Arch. Ration. Mech. Anal. 164 (2002), no. 4, 287–309. MR 1933630, DOI 10.1007/s00205-002-0215-8 [FZ]FZ Freistühler, H. and Zumbrun, K., Examples of unstable viscous shock waves. Unpublished note, Institut für Mathematik, RWTH Aachen, February 1998.
- Robert A. Gardner and Kevin Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math. 51 (1998), no. 7, 797–855. MR 1617251, DOI 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
- Jonathan Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), no. 4, 325–344. MR 853782, DOI 10.1007/BF00276840
- Jonathan Goodman, Remarks on the stability of viscous shock waves, Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990) SIAM, Philadelphia, PA, 1991, pp. 66–72. MR 1142641
- Jonathan Goodman, Stability of viscous scalar shock fronts in several dimensions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 683–695. MR 978372, DOI 10.1090/S0002-9947-1989-0978372-9
- Jonathan Goodman and Judith R. Miller, Long-time behavior of scalar viscous shock fronts in two dimensions, J. Dynam. Differential Equations 11 (1999), no. 2, 255–277. MR 1695245, DOI 10.1023/A:1021977329306
- Olivier Guès, Guy Métivier, Mark Williams, and Kevin Zumbrun, Multidimensional viscous shocks. II. The small viscosity limit, Comm. Pure Appl. Math. 57 (2004), no. 2, 141–218. MR 2012648, DOI 10.1002/cpa.10115 [GMWZ2]GMWZ3 Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, to appear in Arch. Rational Mech. Anal. [GMWZ3]GMWZ4 Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Navier-Stokes regularization of multidimensional Euler shocks, in preparation. [GMWZ4]GMWZ5 Guès, O., Métivier, G., Williams, M., and Zumbrun, K., Stability of viscous shock waves of symmetric systems with variable multiplicities, in preparation.
- Olivier Guès and Mark Williams, Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J. 51 (2002), no. 2, 421–450. MR 1909296, DOI 10.1512/iumj.2002.51.2197
- David Hoff and Kevin Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997), no. 4, 597–614. MR 1471469, DOI 10.1007/s000330050049
- David Hoff and Kevin Zumbrun, Pointwise Green’s function bounds for multidimensional scalar viscous shock fronts, J. Differential Equations 183 (2002), no. 2, 368–408. MR 1919784, DOI 10.1006/jdeq.2001.4125
- David Hoff and Kevin Zumbrun, Asymptotic behavior of multidimensional scalar viscous shock fronts, Indiana Univ. Math. J. 49 (2000), no. 2, 427–474. MR 1793680, DOI 10.1512/iumj.2000.49.1942
- Peter Howard, Pointwise estimates on the Green’s function for a scalar linear convection-diffusion equation, J. Differential Equations 155 (1999), no. 2, 327–367. MR 1698558, DOI 10.1006/jdeq.1998.3576
- Peter Howard, Pointwise Green’s function approach to stability for scalar conservation laws, Comm. Pure Appl. Math. 52 (1999), no. 10, 1295–1313. MR 1699970, DOI 10.1002/(SICI)1097-0312(199910)52:10<1295::AID-CPA6>3.3.CO;2-D [HZ]HZ Howard, P. and Zumbrun, K., Stability of undercompressive shock waves, Preprint 2004.
- Todd M. Kapitula, Stability of weak shocks in $\lambda$–$\omega$ systems, Indiana Univ. Math. J. 40 (1991), no. 4, 1193–1219. MR 1142711, DOI 10.1512/iumj.1991.40.40053
- Todd Kapitula, On the stability of travelling waves in weighted $L^\infty$ spaces, J. Differential Equations 112 (1994), no. 1, 179–215. MR 1287557, DOI 10.1006/jdeq.1994.1100
- Todd Kapitula and Björn Sandstede, Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Phys. D 124 (1998), no. 1-3, 58–103. MR 1662530, DOI 10.1016/S0167-2789(98)00172-9
- Shuichi Kawashima, Akitaka Matsumura, and Kenji Nishihara, Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 7, 249–252. MR 868811
- Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304
- Gunilla Kreiss and Heinz-Otto Kreiss, Stability of systems of viscous conservation laws, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1397–1424. MR 1639151, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1397::AID-CPA7>3.3.CO;2-O
- Gunilla Kreiss, Heinz-Otto Kreiss, and N. Anders Petersson, On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems, SIAM J. Numer. Anal. 31 (1994), no. 6, 1577–1604. MR 1302676, DOI 10.1137/0731082
- Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. MR 350216
- Tai-Ping Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc. 56 (1985), no. 328, v+108. MR 791863, DOI 10.1090/memo/0328
- Tai-Ping Liu, Pointwise convergence to shock waves for viscous conservation laws, Comm. Pure Appl. Math. 50 (1997), no. 11, 1113–1182. MR 1470318, DOI 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.3.CO;2-8
- Tai-Ping Liu and Zhou Ping Xin, Stability of viscous shock waves associated with a system of non-strictly hyperbolic conservation laws, Comm. Pure Appl. Math. 45 (1992), no. 4, 361–388. MR 1161537, DOI 10.1002/cpa.3160450402
- Tai-Ping Liu and Yanni Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc. 125 (1997), no. 599, viii+120. MR 1357824, DOI 10.1090/memo/0599
- Tai-Ping Liu and Kevin Zumbrun, Nonlinear stability of an undercompressive shock for complex Burgers equation, Comm. Math. Phys. 168 (1995), no. 1, 163–186. MR 1324394, DOI 10.1007/BF02099587
- Tai-Ping Liu and Kevin Zumbrun, On nonlinear stability of general undercompressive viscous shock waves, Comm. Math. Phys. 174 (1995), no. 2, 319–345. MR 1362168, DOI 10.1007/BF02099605
- Andrew Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), no. 275, iv+95. MR 683422, DOI 10.1090/memo/0275
- Andrew Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), no. 281, v+93. MR 699241, DOI 10.1090/memo/0281
- Corrado Mascia and Kevin Zumbrun, Pointwise Green’s function bounds and stability of relaxation shocks, Indiana Univ. Math. J. 51 (2002), no. 4, 773–904. MR 1947862, DOI 10.1512/iumj.2002.51.2212
- C. Mascia and K. Zumbrun, Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems, Comm. Pure Appl. Math. 57 (2004), no. 7, 841–876. MR 2044067, DOI 10.1002/cpa.20023
- Corrado Mascia and Kevin Zumbrun, Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177–263. MR 2004135, DOI 10.1007/s00205-003-0258-5
- Corrado Mascia and Kevin Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal. 172 (2004), no. 1, 93–131. MR 2048568, DOI 10.1007/s00205-003-0293-2 [MaZ5]MaZ.5 Mascia, C. and Zumbrun, K., Stability of large-amplitude shock profiles for general relaxation systems, Preprint 2003.
- Akitaka Matsumura and Kenji Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math. 2 (1985), no. 1, 17–25. MR 839317, DOI 10.1007/BF03167036
- Guy Métivier, Problèmes mixtes non linéaires et stabilité des chocs multidimensionnels, Astérisque 152-153 (1987), 3, 37–53 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. MR 936847
- Guy Métivier, Stability of multidimensional shocks, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 25–103. MR 1842775 [MZ1]MZ Métivier, G. and Zumbrun, K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, to appear in Memoirs of the Amer. Math. Soc., available at http://www.maths.univ-rennes1.fr/ metivier/preprints.html [MZ2]MZ3 Métivier, G. and Zumbrun, K., Hyperbolic boundary value problems for symmetric systems with variable multiplicities, to appear in J. Diff. Eq.; Preprint 2003.
- Ramon Plaza and Kevin Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst. 10 (2004), no. 4, 885–924. MR 2073940, DOI 10.3934/dcds.2004.10.885 [Ra]Ra Raoofi, M., $L^1$-asymptotic behavior of perturbed viscous shock profiles, Thesis, Indiana University, 2004.
- Frederic Rousset, Viscous approximation of strong shocks of systems of conservation laws, SIAM J. Math. Anal. 35 (2003), no. 2, 492–519. MR 2001110, DOI 10.1137/S0036141002403110
- Anders Szepessy and Zhou Ping Xin, Nonlinear stability of viscous shock waves, Arch. Rational Mech. Anal. 122 (1993), no. 1, 53–103. MR 1207241, DOI 10.1007/BF01816555
- Kevin Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 307–516. MR 1842778 [Z2]Zlax Zumbrun, K., Refined Wave–tracking and Nonlinear Stability of Viscous Lax Shocks, Methods Appl. Anal. 7, 2000, 747–768. [Z3]Z3 Zumbrun, K., Stability of large-amplitude shock waves for compressible Navier–Stokes equations, to appear in Handbook of Mathematical Fluid Mechanics, Elsevier, 2004. [Z4]Z4 Zumbrun, K., Planar stability criteria for viscous shock waves of systems with real viscosity, to appear in CIME lecture notes series; Preprint 2004.
- Kevin Zumbrun and Peter Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (1998), no. 3, 741–871. MR 1665788, DOI 10.1512/iumj.1998.47.1604
- K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999), no. 3, 937–992. MR 1736972, DOI 10.1512/iumj.1999.48.1765
Bibliographic Information
- Olivier Guès
- Affiliation: LATP, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille, France
- Email: gues@cmi.univ-mrs.fr
- Guy Métivier
- Affiliation: MAB, Université de Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France
- Email: Guy.Metivier@math.u-bordeaux.fr
- Mark Williams
- Affiliation: University of North Carolina, Department of Mathematics, CB 3250, Phillips Hall, Chapel Hill, NC 27599
- MR Author ID: 225575
- Email: williams@email.unc.edu
- Kevin Zumbrun
- Affiliation: Indiana University, Department of Mathematics, Rawles Hall, Bloomington, IN 47405
- MR Author ID: 330192
- Email: kzumbrun@indiana.edu
- Received by editor(s): September 18, 2002
- Published electronically: October 14, 2004
- Additional Notes: Research was supported in part by European network HYKE grants HPRN-CT-2002-00282 (O.G.) and HPRN-CT-2002-00282 (G.M.) and by NSF grants DMS-0070684 (M.W.) and DMS-0070765 (K.Z.).
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 61-120
- MSC (2000): Primary 35L60; Secondary 35B35, 35B45, 35K55, 35L65, 76L05
- DOI: https://doi.org/10.1090/S0894-0347-04-00470-9
- MathSciNet review: 2114817