Green currents for holomorphic automorphisms of compact Kähler manifolds
HTML articles powered by AMS MathViewer
- by Tien-Cuong Dinh and Nessim Sibony;
- J. Amer. Math. Soc. 18 (2005), 291-312
- DOI: https://doi.org/10.1090/S0894-0347-04-00474-6
- Published electronically: December 7, 2004
- PDF | Request permission
Abstract:
Let $f$ be a holomorphic automorphism of a compact Kähler manifold $(X,\omega )$ of dimension $k\geq 2$. We study the convex cones of positive closed $(p,p)$-currents $T_p$, which satisfy a functional relation \[ f^* T_p=\lambda T_p,\ \ \lambda >1,\] and some regularity condition (PB, PC). Under appropriate assumptions on dynamical degrees we introduce closed finite dimensional cones, not reduced to zero, of such currents. In particular, when the topological entropy $\mathrm {h}(f)$ of $f$ is positive, then for some $m\geq 1$, there is a positive closed $(m,m)$-current $T_m$ which satisfies the relation \[ f^* T_m=\exp (\mathrm {h}(f)) T_m.\] Moreover, every quasi-p.s.h. function is integrable with respect to the trace measure of $T_m$. When the dynamical degrees of $f$ are all distinct, we construct an invariant measure $\mu$ as an intersection of closed currents. We show that this measure is mixing and gives no mass to pluripolar sets and to sets of small Hausdorff dimension.References
- Eric Bedford, Mikhail Lyubich, and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77–125. MR 1207478, DOI 10.1007/BF01232426
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\mathbf C^2$. III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), no. 3, 395–420. MR 1188127, DOI 10.1007/BF01934331
- André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup. (3) 73 (1956), 157–202 (French). MR 87184, DOI 10.24033/asens.1045
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI 10.1090/S0894-0347-1994-1260106-X
- Jean-Yves Briend and Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $\textrm {P}^k(\mathbf C)$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145–159 (French, with English and French summaries). MR 1863737, DOI 10.1007/s10240-001-8190-4
- Serge Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math. 187 (2001), no. 1, 1–57 (French). MR 1864630, DOI 10.1007/BF02392831
- Laurent Clozel and Emmanuel Ullmo, Correspondances modulaires et mesures invariantes, J. Reine Angew. Math. 558 (2003), 47–83 (French). MR 1979182, DOI 10.1515/crll.2003.042
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, Théorie de Hodge $L^2$ et théorèmes d’annulation, Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3, Soc. Math. France, Paris, 1996, pp. 3–111 (French). MR 1409819
- Jean-Pierre Demailly, Pseudoconvex-concave duality and regularization of currents, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 233–271. MR 1748605 Dinh T.C. Dinh, Distribution des préimages et des points périodiques d’une correspondance polynomiale, Bull. Soc. Math. France, to appear. Dinh2 T.C. Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, preprint, 2003. arXiv:math.DS/0309421.
- Tien-Cuong Dinh and Nessim Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), no. 4, 367–423 (French, with English and French summaries). MR 1992375, DOI 10.1016/S0021-7824(03)00026-6
- Tien-Cuong Dinh and Nessim Sibony, Dynamique des applications polynomiales semi-régulières, Ark. Mat. 42 (2004), no. 1, 61–85 (French, with English summary). MR 2056545, DOI 10.1007/BF02432910
- Tien-Cuong Dinh and Nessim Sibony, Groupes commutatifs d’automorphismes d’une variété kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311–328 (French, with English and French summaries). MR 2066940, DOI 10.1215/S0012-7094-04-12323-1 DinhSibony3 T.C. Dinh and N. Sibony, Distribution de valeurs d’une suite de transformations méromorphes et applications, preprint, 2003. arXiv:math.DS/0306095. DinhSibony4 T.C. Dinh and N. Sibony, Une borne supérieure de l’entropie topologique d’une application rationnelle, Ann. of Math., to appear. DinhSibony6 T.C. Dinh and N. Sibony, Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup., to appear. DinhSibony7 T.C. Dinh and N. Sibony, Dynamics of regular birational maps in $\mathbb {P}^k$, J. Funct. Anal., to appear. DinhSibony9 T.C. Dinh and N. Sibony, Decay of correlations and central limit theorem for meromorphic maps, preprint, 2004. arXiv:math.DS/0410008.
- Charles Favre and Vincent Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Univ. Math. J. 50 (2001), no. 2, 881–934 (French, with English summary). MR 1871393, DOI 10.1512/iumj.2001.50.1880
- John Erik Fornæss and Nessim Sibony, Complex Hénon mappings in $\textbf {C}^2$ and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), no. 2, 345–380. MR 1150591, DOI 10.1215/S0012-7094-92-06515-X
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186. Notes partially written by Estela A. Gavosto. MR 1332961
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, pp. 1–38. MR 1095529
- Vincent Guedj, Dynamics of polynomial mappings of $\Bbb C^2$, Amer. J. Math. 124 (2002), no. 1, 75–106. MR 1879000, DOI 10.1353/ajm.2002.0002 Guedj V. Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math., to appear.
- Vincent Guedj and Nessim Sibony, Dynamics of polynomial automorphisms of $\mathbf C^k$, Ark. Mat. 40 (2002), no. 2, 207–243. MR 1948064, DOI 10.1007/BF02384535
- A. G. Khovanskiĭ, Fewnomials and Pfaff manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 549–564. MR 804711
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Barry Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35–45. MR 1181085
- Curtis T. McMullen, Dynamics on $K3$ surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. MR 1896103, DOI 10.1515/crll.2002.036
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- B. Teissier, Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 85–105. MR 645731 Voisin C. Voisin, Intrinsic pseudovolume forms and K-correspondences, preprint, 2003, arXiv: math.AG/0212110.
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
Bibliographic Information
- Tien-Cuong Dinh
- Affiliation: Mathématique - Bât. 425, UMR 8628, Université Paris-Sud, 91405 Orsay, France
- MR Author ID: 608547
- Email: TienCuong.Dinh@math.u-psud.fr
- Nessim Sibony
- Affiliation: Mathématique - Bât. 425, UMR 8628, Université Paris-Sud, 91405 Orsay, France
- MR Author ID: 161495
- Email: Nessim.Sibony@math.u-psud.fr
- Received by editor(s): November 20, 2003
- Published electronically: December 7, 2004
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 291-312
- MSC (2000): Primary 37F10, 32H50, 32Q15, 32U40
- DOI: https://doi.org/10.1090/S0894-0347-04-00474-6
- MathSciNet review: 2137979