Green currents for holomorphic automorphisms of compact Kähler manifolds
Authors:
Tien-Cuong Dinh and Nessim Sibony
Journal:
J. Amer. Math. Soc. 18 (2005), 291-312
MSC (2000):
Primary 37F10, 32H50, 32Q15, 32U40
DOI:
https://doi.org/10.1090/S0894-0347-04-00474-6
Published electronically:
December 7, 2004
MathSciNet review:
2137979
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $f$ be a holomorphic automorphism of a compact Kähler manifold $(X,\omega )$ of dimension $k\geq 2$. We study the convex cones of positive closed $(p,p)$-currents $T_p$, which satisfy a functional relation \[ f^* T_p=\lambda T_p,\ \ \lambda >1,\] and some regularity condition (PB, PC). Under appropriate assumptions on dynamical degrees we introduce closed finite dimensional cones, not reduced to zero, of such currents. In particular, when the topological entropy $\mathrm {h}(f)$ of $f$ is positive, then for some $m\geq 1$, there is a positive closed $(m,m)$-current $T_m$ which satisfies the relation \[ f^* T_m=\exp (\mathrm {h}(f)) T_m.\] Moreover, every quasi-p.s.h. function is integrable with respect to the trace measure of $T_m$. When the dynamical degrees of $f$ are all distinct, we construct an invariant measure $\mu$ as an intersection of closed currents. We show that this measure is mixing and gives no mass to pluripolar sets and to sets of small Hausdorff dimension.
- Eric Bedford, Mikhail Lyubich, and John Smillie, Polynomial diffeomorphisms of ${\bf C}^2$. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77–125. MR 1207478, DOI https://doi.org/10.1007/BF01232426
- Eric Bedford and John Smillie, Polynomial diffeomorphisms of $\mathbf C^2$. III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann. 294 (1992), no. 3, 395–420. MR 1188127, DOI https://doi.org/10.1007/BF01934331
- André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 157–202 (French). MR 0087184
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI https://doi.org/10.1090/S0894-0347-1994-1260106-X
- Jean-Yves Briend and Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de ${\rm P}^k(\mathbf C)$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145–159 (French, with English and French summaries). MR 1863737, DOI https://doi.org/10.1007/s10240-001-8190-4
- Serge Cantat, Dynamique des automorphismes des surfaces $K3$, Acta Math. 187 (2001), no. 1, 1–57 (French). MR 1864630, DOI https://doi.org/10.1007/BF02392831
- Laurent Clozel and Emmanuel Ullmo, Correspondances modulaires et mesures invariantes, J. Reine Angew. Math. 558 (2003), 47–83 (French). MR 1979182, DOI https://doi.org/10.1515/crll.2003.042
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, Théorie de Hodge $L^2$ et théorèmes d’annulation, Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3, Soc. Math. France, Paris, 1996, pp. 3–111 (French). MR 1409819
- Jean-Pierre Demailly, Pseudoconvex-concave duality and regularization of currents, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 233–271. MR 1748605 Dinh T.C. Dinh, Distribution des préimages et des points périodiques d’une correspondance polynomiale, Bull. Soc. Math. France, to appear. Dinh2 T.C. Dinh, Suites d’applications méromorphes multivaluées et courants laminaires, preprint, 2003. arXiv:math.DS/0309421.
- Tien-Cuong Dinh and Nessim Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), no. 4, 367–423 (French, with English and French summaries). MR 1992375, DOI https://doi.org/10.1016/S0021-7824%2803%2900026-6
- Tien-Cuong Dinh and Nessim Sibony, Dynamique des applications polynomiales semi-régulières, Ark. Mat. 42 (2004), no. 1, 61–85 (French, with English summary). MR 2056545, DOI https://doi.org/10.1007/BF02432910
- Tien-Cuong Dinh and Nessim Sibony, Groupes commutatifs d’automorphismes d’une variété kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311–328 (French, with English and French summaries). MR 2066940, DOI https://doi.org/10.1215/S0012-7094-04-12323-1 DinhSibony3 T.C. Dinh and N. Sibony, Distribution de valeurs d’une suite de transformations méromorphes et applications, preprint, 2003. arXiv:math.DS/0306095. DinhSibony4 T.C. Dinh and N. Sibony, Une borne supérieure de l’entropie topologique d’une application rationnelle, Ann. of Math., to appear. DinhSibony6 T.C. Dinh and N. Sibony, Regularization of currents and entropy, Ann. Sci. Ecole Norm. Sup., to appear. DinhSibony7 T.C. Dinh and N. Sibony, Dynamics of regular birational maps in $\mathbb {P}^k$, J. Funct. Anal., to appear. DinhSibony9 T.C. Dinh and N. Sibony, Decay of correlations and central limit theorem for meromorphic maps, preprint, 2004. arXiv:math.DS/0410008.
- Charles Favre and Vincent Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Univ. Math. J. 50 (2001), no. 2, 881–934 (French, with English summary). MR 1871393, DOI https://doi.org/10.1512/iumj.2001.50.1880
- John Erik Fornæss and Nessim Sibony, Complex Hénon mappings in ${\bf C}^2$ and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), no. 2, 345–380. MR 1150591, DOI https://doi.org/10.1215/S0012-7094-92-06515-X
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186. Notes partially written by Estela A. Gavosto. MR 1332961
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, pp. 1–38. MR 1095529
- Vincent Guedj, Dynamics of polynomial mappings of $\Bbb C^2$, Amer. J. Math. 124 (2002), no. 1, 75–106. MR 1879000 Guedj V. Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math., to appear.
- Vincent Guedj and Nessim Sibony, Dynamics of polynomial automorphisms of $\mathbf C^k$, Ark. Mat. 40 (2002), no. 2, 207–243. MR 1948064, DOI https://doi.org/10.1007/BF02384535
- A. G. Khovanskiĭ, Fewnomials and Pfaff manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 549–564. MR 804711
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
- Barry Mazur, The topology of rational points, Experiment. Math. 1 (1992), no. 1, 35–45. MR 1181085
- Curtis T. McMullen, Dynamics on $K3$ surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. MR 1896103, DOI https://doi.org/10.1515/crll.2002.036
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- B. Teissier, Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 85–105. MR 645731 Voisin C. Voisin, Intrinsic pseudovolume forms and K-correspondences, preprint, 2003, arXiv: math.AG/0212110.
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI https://doi.org/10.1007/BF02766215
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 37F10, 32H50, 32Q15, 32U40
Retrieve articles in all journals with MSC (2000): 37F10, 32H50, 32Q15, 32U40
Additional Information
Tien-Cuong Dinh
Affiliation:
Mathématique - Bât. 425, UMR 8628, Université Paris-Sud, 91405 Orsay, France
MR Author ID:
608547
Email:
TienCuong.Dinh@math.u-psud.fr
Nessim Sibony
Affiliation:
Mathématique - Bât. 425, UMR 8628, Université Paris-Sud, 91405 Orsay, France
MR Author ID:
161495
Email:
Nessim.Sibony@math.u-psud.fr
Keywords:
Green current,
equilibrium measure,
mixing.
Received by editor(s):
November 20, 2003
Published electronically:
December 7, 2004
Article copyright:
© Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.