Enumerative tropical algebraic geometry in $\mathbb {R}^2$
HTML articles powered by AMS MathViewer
- by Grigory Mikhalkin;
- J. Amer. Math. Soc. 18 (2005), 313-377
- DOI: https://doi.org/10.1090/S0894-0347-05-00477-7
- Published electronically: January 20, 2005
- HTML | PDF
Abstract:
The paper establishes a formula for enumeration of curves of arbitrary genus in toric surfaces. It turns out that such curves can be counted by means of certain lattice paths in the Newton polygon. The formula was announced earlier in Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634. The result is established with the help of the so-called tropical algebraic geometry. This geometry allows one to replace complex toric varieties with the real space $\mathbb {R}^n$ and holomorphic curves with certain piecewise-linear graphs there.References
- Ofer Aharony and Amihay Hanany, Branes, superpotentials and superconformal fixed points, Nuclear Phys. B 504 (1997), no. 1-2, 239–271. MR 1482482, DOI 10.1016/S0550-3213(97)00472-0 AHK O. Aharony, A. Hanany, B. Kol, Webs of $(p,q)$ 5-branes, five dimensional field theories and grid diagrams, http://arxiv.org hep-th/9710116.
- Lucia Caporaso and Joe Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), no. 2, 345–392. MR 1608583, DOI 10.1007/s002220050208
- Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560–673. GAFA 2000 (Tel Aviv, 1999). MR 1826267, DOI 10.1007/978-3-0346-0425-3_{4}
- Mikael Forsberg, Mikael Passare, and August Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math. 151 (2000), no. 1, 45–70. MR 1752241, DOI 10.1006/aima.1999.1856
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825 It I. Itenberg, Amibes de variétés algébriques et dénombrement de courbes [d’après G. Mikhalkin], Séminaire Bourbaki 55ème année, 2002-2003, no. 921.
- Ilia Itenberg, Viatcheslav Kharlamov, and Eugenii Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. 49 (2003), 2639–2653. MR 2012521, DOI 10.1155/S1073792803131352 Ka M. M. Kapranov, Amoebas over non-Archimedian fields, Preprint 2000.
- A. G. Hovanskiĭ, Newton polyhedra, and toroidal varieties, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 56–64, 96 (Russian). MR 476733
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244, DOI 10.1007/BF02101490
- Maxim Kontsevich and Yan Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 203–263. MR 1882331, DOI 10.1142/9789812799821_{0}007
- A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31 (French). MR 419433, DOI 10.1007/BF01389769
- Grigori L. Litvinov and Victor P. Maslov, The correspondence principle for idempotent calculus and some computer applications, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 420–443. MR 1608383, DOI 10.1017/CBO9780511662508.026
- G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309–326. MR 1745011, DOI 10.2307/121119
- Grigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004), no. 5, 1035–1065. MR 2079993, DOI 10.1016/j.top.2003.11.006
- Grigory Mikhalkin, Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634 (English, with English and French summaries). MR 1988122, DOI 10.1016/S1631-073X(03)00104-3
- Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), no. 3, 481–507. MR 2040284, DOI 10.1215/S0012-7094-04-12134-7
- Jean-Eric Pin, Tropical semirings, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 50–69. MR 1608374, DOI 10.1017/CBO9780511662508.004 Shust E. Shustin, Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, http://arxiv.org math.AG/0211278.
- Z. Ran, Enumerative geometry of singular plane curves, Invent. Math. 97 (1989), no. 3, 447–465. MR 1005002, DOI 10.1007/BF01388886 SST J. Richter-Gebert, B. Sturmfels, T. Theobald, First steps in tropical geometry, http://arXiv.org math.AG/0306366.
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI 10.1515/advg.2004.023 SpSt D. Speyer, B. Sturmfels, Tropical Mathematics, http://arxiv.org math.CO/0408099.
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2002. MR 1925796, DOI 10.1090/cbms/097
- Ravi Vakil, Counting curves on rational surfaces, Manuscripta Math. 102 (2000), no. 1, 53–84. MR 1771228, DOI 10.1007/s002291020053
- O. Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees $6$ and $7$, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187–200. MR 770238, DOI 10.1007/BFb0099934
- Jean-Yves Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003), no. 4, 341–344 (English, with English and French summaries). MR 1976315, DOI 10.1016/S1631-073X(03)00059-1
Bibliographic Information
- Grigory Mikhalkin
- Affiliation: Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, M5S 3G3 Canada and St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011 Russia
- Address at time of publication: IHES, Le Bois-Marie, 35, route de Chartres, Bures-sur-Yvette, 91440, France
- Email: mikha@math.toronto.edu
- Received by editor(s): January 31, 2004
- Published electronically: January 20, 2005
- Additional Notes: The author would like to acknowledge partial support of the NSF and NSERC
- © Copyright 2005 Grigory Mikhalkin
- Journal: J. Amer. Math. Soc. 18 (2005), 313-377
- MSC (2000): Primary 14N35, 52B20; Secondary 14N10, 14P25, 51M20
- DOI: https://doi.org/10.1090/S0894-0347-05-00477-7
- MathSciNet review: 2137980