Enumerative tropical algebraic geometry in $\mathbb {R}^2$
Author:
Grigory Mikhalkin
Journal:
J. Amer. Math. Soc. 18 (2005), 313-377
MSC (2000):
Primary 14N35, 52B20; Secondary 14N10, 14P25, 51M20
DOI:
https://doi.org/10.1090/S0894-0347-05-00477-7
Published electronically:
January 20, 2005
MathSciNet review:
2137980
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: The paper establishes a formula for enumeration of curves of arbitrary genus in toric surfaces. It turns out that such curves can be counted by means of certain lattice paths in the Newton polygon. The formula was announced earlier in Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634. The result is established with the help of the so-called tropical algebraic geometry. This geometry allows one to replace complex toric varieties with the real space $\mathbb {R}^n$ and holomorphic curves with certain piecewise-linear graphs there.
- Ofer Aharony and Amihay Hanany, Branes, superpotentials and superconformal fixed points, Nuclear Phys. B 504 (1997), no. 1-2, 239–271. MR 1482482, DOI https://doi.org/10.1016/S0550-3213%2897%2900472-0 AHK O. Aharony, A. Hanany, B. Kol, Webs of $(p,q)$ 5-branes, five dimensional field theories and grid diagrams, http://arxiv.org hep-th/9710116.
- Lucia Caporaso and Joe Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), no. 2, 345–392. MR 1608583, DOI https://doi.org/10.1007/s002220050208
- Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560–673. GAFA 2000 (Tel Aviv, 1999). MR 1826267, DOI https://doi.org/10.1007/978-3-0346-0425-3_4
- Mikael Forsberg, Mikael Passare, and August Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math. 151 (2000), no. 1, 45–70. MR 1752241, DOI https://doi.org/10.1006/aima.1999.1856
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825 It I. Itenberg, Amibes de variétés algébriques et dénombrement de courbes [d’après G. Mikhalkin], Séminaire Bourbaki 55ème année, 2002-2003, no. 921.
- Ilia Itenberg, Viatcheslav Kharlamov, and Eugenii Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. 49 (2003), 2639–2653. MR 2012521, DOI https://doi.org/10.1155/S1073792803131352 Ka M. M. Kapranov, Amoebas over non-Archimedian fields, Preprint 2000.
- A. G. Hovanskiĭ, Newton polyhedra, and toroidal varieties, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 56–64, 96 (Russian). MR 0476733
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Maxim Kontsevich and Yan Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 203–263. MR 1882331, DOI https://doi.org/10.1142/9789812799821_0007
- A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31 (French). MR 419433, DOI https://doi.org/10.1007/BF01389769
- Grigori L. Litvinov and Victor P. Maslov, The correspondence principle for idempotent calculus and some computer applications, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 420–443. MR 1608383, DOI https://doi.org/10.1017/CBO9780511662508.026
- G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309–326. MR 1745011, DOI https://doi.org/10.2307/121119
- Grigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004), no. 5, 1035–1065. MR 2079993, DOI https://doi.org/10.1016/j.top.2003.11.006
- Grigory Mikhalkin, Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003), no. 8, 629–634 (English, with English and French summaries). MR 1988122, DOI https://doi.org/10.1016/S1631-073X%2803%2900104-3
- Mikael Passare and Hans Rullgård, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), no. 3, 481–507. MR 2040284, DOI https://doi.org/10.1215/S0012-7094-04-12134-7
- Jean-Eric Pin, Tropical semirings, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 50–69. MR 1608374, DOI https://doi.org/10.1017/CBO9780511662508.004 Shust E. Shustin, Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, http://arxiv.org math.AG/0211278.
- Z. Ran, Enumerative geometry of singular plane curves, Invent. Math. 97 (1989), no. 3, 447–465. MR 1005002, DOI https://doi.org/10.1007/BF01388886 SST J. Richter-Gebert, B. Sturmfels, T. Theobald, First steps in tropical geometry, http://arXiv.org math.AG/0306366.
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI https://doi.org/10.1515/advg.2004.023 SpSt D. Speyer, B. Sturmfels, Tropical Mathematics, http://arxiv.org math.CO/0408099.
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI https://doi.org/10.1016/0550-3213%2896%2900434-8
- Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2002. MR 1925796
- Ravi Vakil, Counting curves on rational surfaces, Manuscripta Math. 102 (2000), no. 1, 53–84. MR 1771228, DOI https://doi.org/10.1007/s002291020053
- O. Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees $6$ and $7$, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187–200. MR 770238, DOI https://doi.org/10.1007/BFb0099934
- Jean-Yves Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003), no. 4, 341–344 (English, with English and French summaries). MR 1976315, DOI https://doi.org/10.1016/S1631-073X%2803%2900059-1
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14N35, 52B20, 14N10, 14P25, 51M20
Retrieve articles in all journals with MSC (2000): 14N35, 52B20, 14N10, 14P25, 51M20
Additional Information
Grigory Mikhalkin
Affiliation:
Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, M5S 3G3 Canada and St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011 Russia
Address at time of publication:
IHES, Le Bois-Marie, 35, route de Chartres, Bures-sur-Yvette, 91440, France
Email:
mikha@math.toronto.edu
Keywords:
Tropical curves,
enumerative geometry,
Gromov-Witten invariants,
toric surfaces
Received by editor(s):
January 31, 2004
Published electronically:
January 20, 2005
Additional Notes:
The author would like to acknowledge partial support of the NSF and NSERC
Article copyright:
© Copyright 2005
Grigory Mikhalkin