An uncountable family of nonorbit equivalent actions of $\mathbb {F}_n$
HTML articles powered by AMS MathViewer
- by Damien Gaboriau and Sorin Popa;
- J. Amer. Math. Soc. 18 (2005), 547-559
- DOI: https://doi.org/10.1090/S0894-0347-05-00480-7
- Published electronically: March 28, 2005
- PDF | Request permission
Abstract:
For each $2 \leq n \leq \infty$, we construct an uncountable family of free ergodic measure preserving actions $\alpha _t$ of the free group $\mathbb {F}_n$ on the standard probability space $(X, \mu )$ such that any two are nonorbit equivalent (in fact, not even stably orbit equivalent). These actions are all “rigid” (in the sense of Popa), with the II$_1$ factors $L^\infty (X, \mu )\rtimes _{\alpha _t} \mathbb {F}_n$ mutually nonisomorphic (even nonstably isomorphic) and in the class $\mathcal {H}\mathcal {T}_{_{s}}.$References
- S. I. Bezuglyĭ and V. Ya. Golodets, Hyperfinite and $\textrm {II}_{1}$ actions for nonamenable groups, J. Functional Analysis 40 (1981), no. 1, 30–44. MR 607589, DOI 10.1016/0022-1236(81)90070-7
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- A. Connes and V. Jones, Property $T$ for von Neumann algebras, Bull. London Math. Soc. 17 (1985), no. 1, 57–62. MR 766450, DOI 10.1112/blms/17.1.57
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Damien Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41–98 (French, with English summary). MR 1728876, DOI 10.1007/s002229900019
- Damien Gaboriau, Invariants $l^2$ de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93–150 (French). MR 1953191, DOI 10.1007/s102400200002
- Sergey L. Gefter and Valentin Ya. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 821–847 (1989). MR 1000122, DOI 10.2977/prims/1195173929
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082 [Hj02-a]Hj02-a G. Hjorth: A lemma for cost attained, UCLA preprint 2002. [Hj02-b]Hj02-b G. Hjorth: A converse to Dye’s Theorem, UCLA preprint, September 2002.
- G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 383–396 (1983). MR 721730, DOI 10.1017/S014338570000167X
- Dusa McDuff, Uncountably many $\textrm {II}_{1}$ factors, Ann. of Math. (2) 90 (1969), 372–377. MR 259625, DOI 10.2307/1970730 [MS02]MS02 N. Monod, Y. Shalom: Orbit equivalence rigidity and bounded cohomology, Preprint. (2002).
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3 [Po86]Po86 S. Popa: Correspondences, INCREST preprint 1986, unpublished. [Po01]Po01 S. Popa: On a class of type II$_1$ factors with Betti numbers invariants, MSRI preprint 2001-024, revised math.OA/0209130, to appear in Ann. of Math.
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Damien Gaboriau
- Affiliation: Umpa, UMR CNRS 5669, ENS-Lyon, F-69364 Lyon Cedex 7, France
- Email: gaboriau@umpa.ens-lyon.fr
- Sorin Popa
- Affiliation: Department of Mathematics, Univeristy of California, Los Angeles, California 90095-1555
- MR Author ID: 141080
- Email: popa@math.ucla.edu
- Received by editor(s): September 12, 2003
- Published electronically: March 28, 2005
- Additional Notes: The first author wishes to thank the C.N.R.S
The second author was supported in part by NSF Grant 0100883 - © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 547-559
- MSC (2000): Primary 37A20, 46L10
- DOI: https://doi.org/10.1090/S0894-0347-05-00480-7
- MathSciNet review: 2138136