On the Farrell-Jones conjecture for higher algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by Arthur Bartels and Holger Reich;
- J. Amer. Math. Soc. 18 (2005), 501-545
- DOI: https://doi.org/10.1090/S0894-0347-05-00482-0
- Published electronically: March 30, 2005
- PDF | Request permission
Abstract:
We prove the Farrell-Jones Conjecture for the algebraic $K$-theory of a group ring $R \Gamma$ in the case where the group $\Gamma$ is the fundamental group of a closed Riemannian manifold with strictly negative sectional curvature. The coefficient ring $R$ is an arbitrary associative ring with unit and the result applies to all dimensions.References
- Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2) 121 (1985), no. 3, 429–461. MR 794369, DOI 10.2307/1971181
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 249491
- Werner Ballmann, Misha Brin, and Patrick Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2) 122 (1985), no. 1, 171–203. MR 799256, DOI 10.2307/1971373
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- Arthur Bartels, Tom Farrell, Lowell Jones, and Holger Reich, A foliated squeezing theorem for geometric modules, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 1–21. MR 2048714, DOI 10.1142/9789812704443_{0}001
- Arthur Bartels, Tom Farrell, Lowell Jones, and Holger Reich, On the isomorphism conjecture in algebraic $K$-theory, Topology 43 (2004), no. 1, 157–213. MR 2030590, DOI 10.1016/S0040-9383(03)00032-6
- H. Bass, A. Heller, and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 61–79. MR 174605, DOI 10.1007/BF02684690
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4 [Bri79]Brinkmann(1979) K.-H. Brinkmann, Algebraische $K$-Theorie über Kettenkomplexe, Diplomarbeit, Bielefeld, 1979.
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 458335
- M. Cárdenas and E. K. Pedersen, On the Karoubi filtration of a category, $K$-Theory 12 (1997), no. 2, 165–191. MR 1469141, DOI 10.1023/A:1007726201728
- James F. Davis and Wolfgang Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), no. 3, 201–252. MR 1659969, DOI 10.1023/A:1007784106877
- Patrick Eberlein, Ursula Hamenstädt, and Viktor Schroeder, Manifolds of nonpositive curvature, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 179–227. MR 1216622, DOI 10.1090/pspum/054.3/1216622
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648, DOI 10.2140/pjm.1973.46.45
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. I, Ann. of Math. (2) 124 (1986), no. 3, 531–569. MR 866708, DOI 10.2307/2007092
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. II, Ann. of Math. (2) 126 (1987), no. 3, 451–493. MR 916716, DOI 10.2307/1971358
- F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257–370. MR 973309, DOI 10.1090/S0894-0347-1989-0973309-4
- F. T. Farrell and L. E. Jones, Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991), no. 3, 769–834. MR 1139646, DOI 10.4310/jdg/1214447541
- F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic $K$-theory, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297. MR 1179537, DOI 10.1090/S0894-0347-1993-1179537-0
- F. T. Farrell and L. E. Jones, Topological rigidity for compact non-positively curved manifolds, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 229–274. MR 1216623, DOI 10.1090/pspum/054.3/1216623
- Daniel Grayson, Higher algebraic $K$-theory. II (after Daniel Quillen), Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976) Lecture Notes in Math., Vol. 551, Springer, Berlin-New York, 1976, pp. 217–240. MR 574096
- Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977), no. 4, 481–491 (1978). MR 512919
- Ian Hambleton and Erik K. Pedersen, Identifying assembly maps in $K$- and $L$-theory, Math. Ann. 328 (2004), no. 1-2, 27–57. MR 2030369, DOI 10.1007/s00208-003-0454-5
- Nigel Higson, Erik Kjær Pedersen, and John Roe, $C^\ast$-algebras and controlled topology, $K$-Theory 11 (1997), no. 3, 209–239. MR 1451755, DOI 10.1023/A:1007705726771
- Wu Chung Hsiang, Geometric applications of algebraic $K$-theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 99–118. MR 804679
- Max Karoubi, Foncteurs dérivés et $K$-théorie, Séminaire Heidelberg-Saarbrücken-Strasbourg sur la $K$-théorie (1967/68), Lecture Notes in Math., Vol. 136, Springer, Berlin-New York, 1970, pp. 107–186 (French). MR 265435
- Jean-Louis Loday, $K$-théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 309–377 (French). MR 447373, DOI 10.24033/asens.1312 [LR04]Lueck-Reich(survey) W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones Conjectures in ${K}$- and ${L}$-Theory, arXiv:math.KT/0402405, to appear in Handbook of $K$-Theory, Eds. E. Friedlander, D. Grayson, Springer, 2004.
- Lawrence Perko, Differential equations and dynamical systems, 3rd ed., Texts in Applied Mathematics, vol. 7, Springer-Verlag, New York, 2001. MR 1801796, DOI 10.1007/978-1-4613-0003-8
- Erik Kjaer Pedersen and Lawrence R. Taylor, The Wall finiteness obstruction for a fibration, Amer. J. Math. 100 (1978), no. 4, 887–896. MR 509078, DOI 10.2307/2373914
- Erik K. Pedersen and Charles A. Weibel, A nonconnective delooping of algebraic $K$-theory, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 166–181. MR 802790, DOI 10.1007/BFb0074443
- Erik K. Pedersen and Charles A. Weibel, $K$-theory homology of spaces, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 346–361. MR 1000388, DOI 10.1007/BFb0085239
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 85–147. MR 338129
- Frank Quinn, Ends of maps. II, Invent. Math. 68 (1982), no. 3, 353–424. MR 669423, DOI 10.1007/BF01389410
- Tammo tom Dieck, Orbittypen und äquivariante Homologie. I, Arch. Math. (Basel) 23 (1972), 307–317 (German). MR 310919, DOI 10.1007/BF01304886
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Friedhelm Waldhausen, Algebraic $K$-theory of generalized free products. I, II, Ann. of Math. (2) 108 (1978), no. 1, 135–204. MR 498807, DOI 10.2307/1971165
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
Bibliographic Information
- Arthur Bartels
- Affiliation: Fachbereich Mathematik, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
- MR Author ID: 653568
- Email: bartelsa@math.uni-muenster.de
- Holger Reich
- Affiliation: Fachbereich Mathematik, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
- Email: reichh@math.uni-muenster.de
- Received by editor(s): August 5, 2003
- Published electronically: March 30, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 501-545
- MSC (2000): Primary 19D50; Secondary 53C12
- DOI: https://doi.org/10.1090/S0894-0347-05-00482-0
- MathSciNet review: 2138135