Minkowski’s conjecture, well-rounded lattices and topological dimension
HTML articles powered by AMS MathViewer
- by Curtis T. McMullen;
- J. Amer. Math. Soc. 18 (2005), 711-734
- DOI: https://doi.org/10.1090/S0894-0347-05-00483-2
- Published electronically: March 24, 2005
- PDF | Request permission
Abstract:
Let $A \subset {\operatorname {SL}}_n({\mathbb R})$ be the diagonal subgroup, and identify ${\operatorname {SL}}_n({\mathbb R})/ {\operatorname {SL}}_n({\mathbb Z})$ with the space of unimodular lattices in ${\mathbb R}^n$. In this paper we show that the closure of any bounded orbit \begin{equation*} A \cdot L \subset {\operatorname {SL}}_n({\mathbb R})/{\operatorname {SL}}_n({\mathbb Z}) \end{equation*} meets the set of well-rounded lattices. This assertion implies Minkowski’s conjecture for $n=6$ and yields bounds for the density of algebraic integers in totally real sextic fields. The proof is based on the theory of topological dimension, as reflected in the combinatorics of open covers of ${\mathbb R}^n$ and $T^n$.References
- Avner Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984), no. 2, 459–468. MR 747876, DOI 10.1215/S0012-7094-84-05123-8
- Avner Ash and Mark McConnell, Cohomology at infinity and the well-rounded retract for general linear groups, Duke Math. J. 90 (1997), no. 3, 549–576. MR 1480546, DOI 10.1215/S0012-7094-97-09015-3
- R. P. Bambah and A. C. Woods, Minkowski’s conjecture for $n=5$; a theorem of Skubenko, J. Number Theory 12 (1980), no. 1, 27–48. MR 566866, DOI 10.1016/0022-314X(80)90070-0
- Eva Bayer-Fluckiger, Lattices and number fields, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 69–84. MR 1718137, DOI 10.1090/conm/241/03628
- Eva Bayer-Fluckiger, Ideal lattices, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) Cambridge Univ. Press, Cambridge, 2002, pp. 168–184. MR 1975451, DOI 10.1017/CBO9780511542961.012 [BN]Bayer:Nebe:mink E. Bayer-Fluckiger and G. Nebe. On the Euclidean minimum of some real number fields. Preprint, 2004.
- B. J. Birch and H. P. F. Swinnerton-Dyer, On the inhomogeneous minimum of the product of $n$ linear forms, Mathematika 3 (1956), 25–39. MR 79049, DOI 10.1112/S0025579300000863
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 195803
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A 248 (1955), 73–96. MR 70653, DOI 10.1098/rsta.1955.0010
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7 [Da]Davenport:mink H. Davenport. A simple proof of Remak’s theorem on the product of $n$ linear forms. J. London Math. Soc. 14(1939), 47–51.
- F. J. Dyson, On the product of four non-homogeneous linear forms, Ann. of Math. (2) 49 (1948), 82–109. MR 25515, DOI 10.2307/1969116
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, NJ, 1952. MR 50886, DOI 10.1515/9781400877492
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, NJ, 1941. MR 6493
- J. F. Koksma, Diophantische Approximationen, Springer-Verlag, Berlin-New York, 1974 (German). Reprint. MR 344200, DOI 10.1007/978-3-642-65618-7
- Elon Lindenstrauss and Barak Weiss, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1481–1500. MR 1855843, DOI 10.1017/S0143385701001717
- Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR 1754775
- Hermann Minkowski, Diophantische Approximationen. Eine Einführung in die Zahlentheorie, Chelsea Publishing Co., New York, 1957 (German). MR 86102
- Hee Oh, Finiteness of compact maximal flats of bounded volume, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 217–225. MR 2041269, DOI 10.1017/S0143385703000233
- Pierre Pansu, Introduction to $L^2$ Betti numbers, Riemannian geometry (Waterloo, ON, 1993) Fields Inst. Monogr., vol. 4, Amer. Math. Soc., Providence, RI, 1996, pp. 53–86. MR 1377309, DOI 10.1051/jp2:1996166
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 507234, DOI 10.1007/978-3-642-86426-1 [Re]Remak:mink R. Remak. Verallgemeinerung eines Minkowskischen Satzes. Math. Zeitschr. 17–18(1928), 1–34; 173–200.
- B. F. Skubenko, A new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$, Trudy Mat. Inst. Steklov. 142 (1976), 240–253, 271 (Russian). Number theory, mathematical analysis and their applications. MR 563094 [Sk2]Skubenko:mink B. F. Skubenko. A proof of Minkowski’s conjecture on the product of $n$ linear inhomogeneous forms in $n$ variables for $n\leq 5$. J. Soviet Math. 6(1976), 627–650.
- Christophe Soulé, The cohomology of $\textrm {SL}_{3}(\textbf {Z})$, Topology 17 (1978), no. 1, 1–22. MR 470141, DOI 10.1016/0040-9383(78)90009-5
- George Tomanov and Barak Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), no. 2, 367–392. MR 1997950, DOI 10.1215/S0012-7094-03-11926-2
- P. Vámos, The missing axiom of matroid theory is lost forever, J. London Math. Soc. (2) 18 (1978), no. 3, 403–408. MR 518224, DOI 10.1112/jlms/s2-18.3.403
- A. C. Woods, Covering six space with spheres, J. Number Theory 4 (1972), 157–180. MR 302570, DOI 10.1016/0022-314X(72)90061-3
Bibliographic Information
- Curtis T. McMullen
- Affiliation: Department of Mathematics, Harvard University, 1 Oxford St, Cambridge, Massachusetts 02138-2901
- Received by editor(s): August 27, 2004
- Published electronically: March 24, 2005
- Additional Notes: Research partially supported by the NSF and the Guggenheim Foundation.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 711-734
- MSC (2000): Primary 11H31; Secondary 11E57, 11J83, 55M10, 55N30
- DOI: https://doi.org/10.1090/S0894-0347-05-00483-2
- MathSciNet review: 2138142