Well-posedness of the water-waves equations
HTML articles powered by AMS MathViewer
- by David Lannes;
- J. Amer. Math. Soc. 18 (2005), 605-654
- DOI: https://doi.org/10.1090/S0894-0347-05-00484-4
- Published electronically: April 7, 2005
- HTML | PDF | Request permission
Abstract:
We prove that the water-waves equations (i.e., the inviscid Euler equations with free surface) are well-posed locally in time in Sobolev spaces for a fluid layer of finite depth, either in dimension $2$ or $3$ under a stability condition on the linearized equations. This condition appears naturally as the Lévy condition one has to impose on these nonstricly hyperbolic equations to insure well-posedness; it coincides with the generalized Taylor criterion exhibited in earlier works. Similarly to what happens in infinite depth, we show that this condition always holds for flat bottoms. For uneven bottoms, we prove that it is satisfied provided that a smallness condition on the second fundamental form of the bottom surface evaluated on the initial velocity field is satisfied. We work here with a formulation of the water-waves equations in terms of the velocity potential at the free surface and of the elevation of the free surface, and in Eulerian variables. This formulation involves a Dirichlet-Neumann operator which we study in detail: sharp tame estimates, symbol, commutators and shape derivatives. This allows us to give a tame estimate on the linearized water-waves equations and to conclude with a Nash-Moser iterative scheme.References
- Serge Alinhac and Patrick Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels. [Current Scholarship], InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, 1991 (French). MR 1172111 Bona-Colin-Lannes J. Bona, T. Colin, D. Lannes, Long wave approximations for water-waves, Arch. Ration. Mech. Anal., to appear.
- J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46 (1993), no. 9, 1269–1301. MR 1231428, DOI 10.1002/cpa.3160460903
- Garrett Birkhoff, Helmholtz and Taylor instability, Proc. Sympos. Appl. Math., Vol. XIII, Amer. Math. Soc., Providence, RI, 1962, pp. 55–76. MR 137423
- Gilles Carbou, Penalization method for viscous incompressible flow around a porous thin layer, Nonlinear Anal. Real World Appl. 5 (2004), no. 5, 815–855. MR 2085697, DOI 10.1016/j.nonrwa.2004.02.003
- Michael Christ and Jean-Lin Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 (1987), no. 1-2, 51–80. MR 906525, DOI 10.1007/BF02392554
- R. R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón, Adv. in Math. 48 (1983), no. 2, 144–148 (French). MR 700980, DOI 10.1016/0001-8708(83)90084-1
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- R. R. Coifman and Yves Meyer, Nonlinear harmonic analysis and analytic dependence, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 71–78. MR 812284, DOI 10.1090/pspum/043/812284
- Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787–1003. MR 795808, DOI 10.1080/03605308508820396
- Walter Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann. 277 (1987), no. 2, 213–232. MR 886420, DOI 10.1007/BF01457361
- Walter Craig and David P. Nicholls, Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids 21 (2002), no. 6, 615–641. MR 1947187, DOI 10.1016/S0997-7546(02)01207-4
- Walter Craig, Ulrich Schanz, and Catherine Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 5, 615–667 (English, with English and French summaries). MR 1470784, DOI 10.1016/S0294-1449(97)80128-X
- W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497–522. MR 1158383, DOI 10.1088/0951-7715/5/2/009
- Marc Dambrine and Michel Pierre, About stability of equilibrium shapes, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 811–834 (English, with English and French summaries). MR 1784487, DOI 10.1051/m2an:2000105
- Hermann Flaschka and Gilbert Strang, The correctness of the Cauchy problem, Advances in Math. 6 (1971), 347–379 (1971). MR 279425, DOI 10.1016/0001-8708(71)90021-1
- P. R. Garabedian and M. Schiffer, Convexity of domain functionals, J. Analyse Math. 2 (1953), 281–368. MR 60117, DOI 10.1007/BF02825640
- John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. MR 1130821, DOI 10.1017/CBO9780511611582
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683 Hadamard J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, [B] Mém. Sav. étrang. (2) 33, Nr. 4, 128 S. (1908).
- Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2
- Thomas Y. Hou, Zhen-huan Teng, and Pingwen Zhang, Well-posedness of linearized motion for $3$-D water waves far from equilibrium, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1551–1585. MR 1410841, DOI 10.1080/03605309608821238
- I. L. Hwang, The $L^2$-boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302 (1987), no. 1, 55–76. MR 887496, DOI 10.1090/S0002-9947-1987-0887496-4
- Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. MR 951744, DOI 10.1002/cpa.3160410704 Lannespara D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, Preprint Université Bordeaux 1.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 247243
- V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splošn. Sredy 18, Dinamika Židkost. so Svobod. Granicami (1974), 104–210, 254 (Russian). MR 609882
- David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 6, 1411–1433. MR 1869643, DOI 10.1017/S0308210500001463
- L. V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Lecture Notes in Math., vol. 503, Springer, Berlin-New York, 1976, pp. 426–437. MR 670760
- Monique Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39–82 (French). MR 840713, DOI 10.5802/aif.1037
- Xavier Saint Raymond, A simple Nash-Moser implicit function theorem, Enseign. Math. (2) 35 (1989), no. 3-4, 217–226. MR 1039945
- Guido Schneider and C. Eugene Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), no. 12, 1475–1535. MR 1780702, DOI 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
- Geoffrey Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. Roy. Soc. London Ser. A 201 (1950), 192–196. MR 36104, DOI 10.1098/rspa.1950.0052
- Michael E. Taylor, Partial differential equations. II, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. Qualitative studies of linear equations. MR 1395149, DOI 10.1007/978-1-4757-4187-2
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, University Series in Mathematics, Plenum Press, New York-London, 1980. Pseudodifferential operators. MR 597144, DOI 10.1007/978-1-4684-8780-0
- Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math. 130 (1997), no. 1, 39–72. MR 1471885, DOI 10.1007/s002220050177
- Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), no. 2, 445–495. MR 1641609, DOI 10.1090/S0894-0347-99-00290-8
- Hideaki Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49–96. MR 660822, DOI 10.2977/prims/1195184016
Bibliographic Information
- David Lannes
- Affiliation: MAB, Université Bordeaux 1 et CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex, France
- Email: lannes@math.u-bordeaux1.fr
- Received by editor(s): November 25, 2003
- Published electronically: April 7, 2005
- Additional Notes: This work was partly supported by the ‘ACI jeunes chercheurs du Ministère de la Recherche “solutions oscillantes d’EDP” et “Dispersion et non-linéarités ”, GDR 2103 EAPQ CNRS and the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 605-654
- MSC (2000): Primary 35Q35, 76B03, 76B15; Secondary 35J67, 35L80
- DOI: https://doi.org/10.1090/S0894-0347-05-00484-4
- MathSciNet review: 2138139