The essentially tame local Langlands correspondence, I
HTML articles powered by AMS MathViewer
- by Colin J. Bushnell and Guy Henniart;
- J. Amer. Math. Soc. 18 (2005), 685-710
- DOI: https://doi.org/10.1090/S0894-0347-05-00487-X
- Published electronically: April 25, 2005
- PDF | Request permission
Abstract:
Let $F$ be a non-Archimedean local field (of characteristic $0$ or $p$) with finite residue field of characteristic $p$. An irreducible smooth representation of the Weil group of $F$ is called essentially tame if its restriction to wild inertia is a sum of characters. The set of isomorphism classes of irreducible, essentially tame representations of dimension $n$ is denoted $\mathcal {G}^\mathrm {et}_n(F)$. The Langlands correspondence induces a bijection of $\mathcal {G}^\mathrm {et}_n(F)$ with a certain set $\mathcal {A}^\mathrm {et}_n(F)$ of irreducible supercuspidal representations of $\mathrm {GL}_n(F)$. We consider the set $P_n(F)$ of isomorphism classes of certain pairs $(E/F,\xi )$, called “admissible”, consisting of a tamely ramified field extension $E/F$ of degree $n$ and a quasicharacter $\xi$ of $E^\times$. There is an obvious bijection of $P_n(F)$ with $\mathcal {G}^\mathrm {et}_n(F)$. Using the classification of supercuspidal representations and tame lifting, we construct directly a canonical bijection of $P_n(F)$ with $\mathcal {A}^\mathrm {et}_n(F)$, generalizing and simplifying a construction of Howe (1977). Together, these maps give a canonical bijection of $\mathcal {G}^\mathrm {et}_n(F)$ with $\mathcal {A}^\mathrm {et}_n(F)$. We show that one obtains the Langlands correspondence by composing the map $P_n(F) \to \mathcal {A}^\mathrm {et}_n(F)$ with a permutation of $P_n(F)$ of the form $(E/F,\xi )\mapsto (E/F,\mu _\xi \xi )$, where $\mu _\xi$ is a tamely ramified character of $E^\times$ depending on $\xi$. This answers a question of Moy (1986). We calculate the character $\mu _\xi$ in the case where $E/F$ is totally ramified of odd degree.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Colin J. Bushnell and Albrecht Fröhlich, Gauss sums and $p$-adic division algebras, Lecture Notes in Mathematics, vol. 987, Springer-Verlag, Berlin-New York, 1983. MR 701540, DOI 10.1007/BFb0066413
- Colin J. Bushnell and Guy Henniart, Local tame lifting for $\textrm {GL}(N)$. I. Simple characters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233. MR 1423022, DOI 10.1007/BF02698646
- Colin J. Bushnell and Guy Henniart, Local tame lifting for $\textrm {GL}(n)$. II. Wildly ramified supercuspidals, Astérisque 254 (1999), vi+105 (English, with English and French summaries). MR 1685898
- Colin J. Bushnell and Guy Henniart, Davenport-Hasse relations and an explicit Langlands correspondence, J. Reine Angew. Math. 519 (2000), 171–199. MR 1739725, DOI 10.1515/crll.2000.011
- Colin J. Bushnell and Guy Henniart, Local tame lifting for $\textrm {GL}(n)$. IV. Simple characters and base change, Proc. London Math. Soc. (3) 87 (2003), no. 2, 337–362. MR 1990931, DOI 10.1112/S0024611503014114 7 —, The essentially tame local Langlands correspondence, II: totally ramified representations, Compositio Mathematica, to appear.
- Colin J. Bushnell, Guy Henniart, and Philip C. Kutzko, Correspondance de Langlands locale pour $\textrm {GL}_n$ et conducteurs de paires, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 4, 537–560 (French, with English and French summaries). MR 1634095, DOI 10.1016/S0012-9593(98)80106-7
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {SL}(N)$. II, Proc. London Math. Soc. (3) 68 (1994), no. 2, 317–379. MR 1253507, DOI 10.1112/plms/s3-68.2.317
- Lawrence Corwin and Roger E. Howe, Computing characters of tamely ramified $p$-adic division algebras, Pacific J. Math. 73 (1977), no. 2, 461–477. MR 492084, DOI 10.2140/pjm.1977.73.461
- George Glauberman, Correspondences of characters for relatively prime operator groups, Canadian J. Math. 20 (1968), 1465–1488. MR 232866, DOI 10.4153/CJM-1968-148-x
- J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447. MR 72878, DOI 10.1090/S0002-9947-1955-0072878-2
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Guy Henniart and Rebecca Herb, Automorphic induction for $\textrm {GL}(n)$ (over local non-Archimedean fields), Duke Math. J. 78 (1995), no. 1, 131–192. MR 1328755, DOI 10.1215/S0012-7094-95-07807-7 17 G. Henniart and B. Lemaire, Work in progress.
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Helmut Koch and Ernst-Wilhelm Zink, Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall), Math. Nachr. 98 (1980), 83–119 (German). MR 623696, DOI 10.1002/mana.19800980110
- G. Laumon, M. Rapoport, and U. Stuhler, ${\scr D}$-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), no. 2, 217–338. MR 1228127, DOI 10.1007/BF01244308
- C. Mœglin, Sur la correspondance de Langlands-Kazhdan, J. Math. Pures Appl. (9) 69 (1990), no. 2, 175–226 (French). MR 1067450
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI 10.2307/2374518
- Harry Reimann, Representations of tamely ramified $p$-adic division and matrix algebras, J. Number Theory 38 (1991), no. 1, 58–105. MR 1105671, DOI 10.1016/0022-314X(91)90093-Q
- Jonathan D. Rogawski, Representations of $\textrm {GL}(n)$ and division algebras over a $p$-adic field, Duke Math. J. 50 (1983), no. 1, 161–196. MR 700135
- Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1296. MR 150130
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111. MR 729755, DOI 10.2307/2374430
Bibliographic Information
- Colin J. Bushnell
- Affiliation: Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
- MR Author ID: 43795
- Email: bushnell@mth.kcl.ac.uk
- Guy Henniart
- Affiliation: Département de Mathématiques & UMR 8628 du CNRS, Bâtiment 425, Université de Paris-Sud, 91405 Orsay cedex, France
- MR Author ID: 84385
- Email: Guy.Henniart@math.u-psud.fr
- Received by editor(s): March 29, 2004
- Published electronically: April 25, 2005
- Additional Notes: Much of the work in this programme was carried out while the first-named author was visiting, and partly supported by, l’Université de Paris-Sud. Both authors were also partially supported by the EU network “Arithmetical Algebraic Geometry”.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 685-710
- MSC (2000): Primary 22E50
- DOI: https://doi.org/10.1090/S0894-0347-05-00487-X
- MathSciNet review: 2138141
Dedicated: To the memory of Albrecht Fröhlich