## The cohomological equation for Roth-type interval exchange maps

HTML articles powered by AMS MathViewer

- by S. Marmi, P. Moussa and J.-C. Yoccoz PDF
- J. Amer. Math. Soc.
**18**(2005), 823-872 Request permission

## Abstract:

We exhibit an explicit class of minimal interval exchange maps (i.e.m.’s) $T$ for which the cohomological equation \[ \Psi -\Psi \circ T=\Phi \] has a bounded solution $\Psi$ provided that the datum $\Phi$ belongs to a finite codimension subspace of the space of functions having on each interval a derivative of bounded variation. The proof is purely dynamical and is based on a renormalization argument and on Gottshalk-Hedlund’s theorem. If the datum is more regular the loss of differentiability in solving the cohomological equation will be the same. The class of interval exchange maps is characterized in terms of a diophantine condition of Roth type imposed to an acceleration of the Rauzy-Veech-Zorich continued fraction expansion associated to $T$. More precisely one must impose a growth rate condition for the matrices appearing in the continued fraction algorithm together with a spectral gap condition (which guarantees unique ergodicity) and a coherence condition. We also prove that the set of Roth-type interval exchange maps has full measure. In the appendices we construct concrete examples of Roth-type i.e.m.’s and we show how the growth rate condition alone does not imply unique ergodicity.## References

- Pierre Arnoux,
*Ergodicité générique des billards polygonaux (d’après Kerckhoff, Masur, Smillie)*, Astérisque**161-162**(1988), Exp. No. 696, 5, 203–221 (1989) (French). Séminaire Bourbaki, Vol. 1987/88. MR**992210** - Michael Boshernitzan,
*A condition for minimal interval exchange maps to be uniquely ergodic*, Duke Math. J.**52**(1985), no. 3, 723–752. MR**808101**, DOI 10.1215/S0012-7094-85-05238-X - Yitwah Cheung,
*Hausdorff dimension of the set of nonergodic directions*, Ann. of Math. (2)**158**(2003), no. 2, 661–678. With an appendix by M. Boshernitzan. MR**2018932**, DOI 10.4007/annals.2003.158.661 - John Coffey,
*Some remarks concerning an example of a minimal, non-uniquely ergodic interval exchange transformation*, Math. Z.**199**(1988), no. 4, 577–580. MR**968323**, DOI 10.1007/BF01161646 *Travaux de Thurston sur les surfaces*, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR**568308**- Giovanni Forni,
*Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus*, Ann. of Math. (2)**146**(1997), no. 2, 295–344. MR**1477760**, DOI 10.2307/2952464 - Giovanni Forni,
*Deviation of ergodic averages for area-preserving flows on surfaces of higher genus*, Ann. of Math. (2)**155**(2002), no. 1, 1–103. MR**1888794**, DOI 10.2307/3062150
[Fo3]Fo3 G. Forni, private communication (2003).
- Walter Helbig Gottschalk and Gustav Arnold Hedlund,
*Topological dynamics*, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R.I., 1955. MR**0074810**, DOI 10.1090/coll/036 - Anatole Katok and Boris Hasselblatt,
*Introduction to the modern theory of dynamical systems*, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR**1326374**, DOI 10.1017/CBO9780511809187 - A. B. Katok and A. M. Stepin,
*Approximations in ergodic theory*, Uspehi Mat. Nauk**22**(1967), no. 5 (137), 81–106 (Russian). MR**0219697** - Michael Keane,
*Interval exchange transformations*, Math. Z.**141**(1975), 25–31. MR**357739**, DOI 10.1007/BF01236981 - Michael Keane,
*Non-ergodic interval exchange transformations*, Israel J. Math.**26**(1977), no. 2, 188–196. MR**435353**, DOI 10.1007/BF03007668 - S. P. Kerckhoff,
*Simplicial systems for interval exchange maps and measured foliations*, Ergodic Theory Dynam. Systems**5**(1985), no. 2, 257–271. MR**796753**, DOI 10.1017/S0143385700002881 - Steven Kerckhoff, Howard Masur, and John Smillie,
*Ergodicity of billiard flows and quadratic differentials*, Ann. of Math. (2)**124**(1986), no. 2, 293–311. MR**855297**, DOI 10.2307/1971280 - Harvey B. Keynes and Dan Newton,
*A “minimal”, non-uniquely ergodic interval exchange transformation*, Math. Z.**148**(1976), no. 2, 101–105. MR**409766**, DOI 10.1007/BF01214699 - Michael S. Keane and Gérard Rauzy,
*Stricte ergodicité des échanges d’intervalles*, Math. Z.**174**(1980), no. 3, 203–212 (French). MR**593819**, DOI 10.1007/BF01161409 - Maxim Kontsevich and Anton Zorich,
*Connected components of the moduli spaces of Abelian differentials with prescribed singularities*, Invent. Math.**153**(2003), no. 3, 631–678. MR**2000471**, DOI 10.1007/s00222-003-0303-x - Howard Masur,
*Interval exchange transformations and measured foliations*, Ann. of Math. (2)**115**(1982), no. 1, 169–200. MR**644018**, DOI 10.2307/1971341 - Stefano Marmi, Pierre Moussa, and Jean-Christophe Yoccoz,
*On the cohomological equation for interval exchange maps*, C. R. Math. Acad. Sci. Paris**336**(2003), no. 11, 941–948 (English, with English and French summaries). MR**1994599**, DOI 10.1016/S1631-073X(03)00222-X - Howard Masur and John Smillie,
*Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms*, Comment. Math. Helv.**68**(1993), no. 2, 289–307. MR**1214233**, DOI 10.1007/BF02565820 - Gérard Rauzy,
*Échanges d’intervalles et transformations induites*, Acta Arith.**34**(1979), no. 4, 315–328 (French). MR**543205**, DOI 10.4064/aa-34-4-315-328 - Mary Rees,
*An alternative approach to the ergodic theory of measured foliations on surfaces*, Ergodic Theory Dynam. Systems**1**(1981), no. 4, 461–488 (1982). MR**662738**, DOI 10.1017/s0143385700001383 - Serge Tabachnikov,
*Billiards*, Panor. Synth.**1**(1995), vi+142 (English, with English and French summaries). MR**1328336** - William A. Veech,
*Interval exchange transformations*, J. Analyse Math.**33**(1978), 222–272. MR**516048**, DOI 10.1007/BF02790174 - William A. Veech,
*Projective Swiss cheeses and uniquely ergodic interval exchange transformations*, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 113–193. MR**633764** - William A. Veech,
*The metric theory of interval exchange transformations. I. Generic spectral properties*, Amer. J. Math.**106**(1984), no. 6, 1331–1359. MR**765582**, DOI 10.2307/2374396 - William A. Veech,
*The metric theory of interval exchange transformations. I. Generic spectral properties*, Amer. J. Math.**106**(1984), no. 6, 1331–1359. MR**765582**, DOI 10.2307/2374396 - William A. Veech,
*The metric theory of interval exchange transformations. I. Generic spectral properties*, Amer. J. Math.**106**(1984), no. 6, 1331–1359. MR**765582**, DOI 10.2307/2374396 - William A. Veech,
*The Teichmüller geodesic flow*, Ann. of Math. (2)**124**(1986), no. 3, 441–530. MR**866707**, DOI 10.2307/2007091 - William A. Veech,
*Moduli spaces of quadratic differentials*, J. Analyse Math.**55**(1990), 117–171. MR**1094714**, DOI 10.1007/BF02789200
[Y]Y J.–C. Yoccoz “Continued fraction algorithms for interval exchange maps: an introduction” preprint (2004), to appear in the proceedings of conference Frontiers in Number Theory, Physics and Geometry, Les Houches, 9 - 21 March 2003.
- Anton Zorich,
*Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents*, Ann. Inst. Fourier (Grenoble)**46**(1996), no. 2, 325–370 (English, with English and French summaries). MR**1393518**, DOI 10.5802/aif.1517 - Anton Zorich,
*Deviation for interval exchange transformations*, Ergodic Theory Dynam. Systems**17**(1997), no. 6, 1477–1499. MR**1488330**, DOI 10.1017/S0143385797086215 - Anton Zorich,
*On hyperplane sections of periodic surfaces*, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, pp. 173–189. MR**1437163**, DOI 10.1090/trans2/179/09 - Anton Zorich,
*How do the leaves of a closed $1$-form wind around a surface?*, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, vol. 197, Amer. Math. Soc., Providence, RI, 1999, pp. 135–178. MR**1733872**, DOI 10.1090/trans2/197/05

## Additional Information

**S. Marmi**- Affiliation: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- MR Author ID: 120140
**P. Moussa**- Affiliation: Service de Physique Théorique, CEA/Saclay, 91191 Gif-Sur-Yvette, France
**J.-C. Yoccoz**- Affiliation: Collège de France, 3, Rue d’Ulm, 75005 Paris, France
- Received by editor(s): April 7, 2004
- Published electronically: May 25, 2005
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**18**(2005), 823-872 - MSC (2000): Primary 37A20; Secondary 11K50, 32G15, 37A45, 37E05
- DOI: https://doi.org/10.1090/S0894-0347-05-00490-X
- MathSciNet review: 2163864