The Loewner differential equation and slit mappings
HTML articles powered by AMS MathViewer
- by Donald E. Marshall and Steffen Rohde;
- J. Amer. Math. Soc. 18 (2005), 763-778
- DOI: https://doi.org/10.1090/S0894-0347-05-00492-3
- Published electronically: June 10, 2005
- PDF | Request permission
Abstract:
We show that the Loewner equation generates slits if the driving term is Hölder continuous with exponent 1/2 and small norm and that this is best possible.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 200442
- Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152. MR 772434, DOI 10.1007/BF02392821
- L. Carleson and N. Makarov, Aggregation in the plane and Loewner’s equation, Comm. Math. Phys. 216 (2001), no. 3, 583–607. MR 1815718, DOI 10.1007/s002200000340
- Clifford J. Earle and Adam Lawrence Epstein, Quasiconformal variation of slit domains, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3363–3372. MR 1845014, DOI 10.1090/S0002-9939-01-05991-3
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- José L. Fernández, Juha Heinonen, and Olli Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–132. MR 981499, DOI 10.1007/BF02820475 GM J. Garnett, D. E. Marshall, Harmonic Measure, Cambridge University Press (2005).
- Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l’Université de Montréal, Montreal, QC, 1982. MR 674294
- P. P. Kufarev, A remark on integrals of Löwner’s equation, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 655–656 (Russian). MR 23907
- R. Kühnau, Numerische Realisierung konformer Abbildungen durch “Interpolation”, Z. Angew. Math. Mech. 63 (1983), no. 12, 631–637 (German, with English and Russian summaries). MR 737000, DOI 10.1002/zamm.19830631206 L K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann. 89 (1923), 103–121. Li J. Lind, A sharp condition for the Loewner equation to generate slits, to appear in Ann. Acad. Sci. Fenn.
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237–273. MR 1879850, DOI 10.1007/BF02392618
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is $4/3$, Math. Res. Lett. 8 (2001), no. 1-2, 13–23. MR 1825256, DOI 10.4310/MRL.2001.v8.n1.a3
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 344463, DOI 10.1007/978-3-642-65513-5 MR D. E. Marshall, S. Rohde, Convergence of the Zipper algorithm for conformal mapping, preprint available at http://www.math.washington.edu/$\sim$marshall/preprints/preprints.html
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher [Studia Mathematica/Mathematical Textbooks], Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 507768
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7 RS S. Rohde, O. Schramm, Basic properties of SLE, arXiv:math.PR/0106036, to appear in Ann. Math.
- Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288. MR 1776084, DOI 10.1007/BF02803524
- Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239–244 (English, with English and French summaries). MR 1851632, DOI 10.1016/S0764-4442(01)01991-7
Bibliographic Information
- Donald E. Marshall
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- MR Author ID: 120295
- Email: marshall@math.washington.edu
- Steffen Rohde
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- Email: rohde@math.washington.edu
- Received by editor(s): July 1, 2003
- Published electronically: June 10, 2005
- Additional Notes: The authors were partially supported by NSF grants DMS-9800464, DMS-9970398, and DMS-0201435.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 763-778
- MSC (2000): Primary 30C45, 30C20; Secondary 30C62, 30C30
- DOI: https://doi.org/10.1090/S0894-0347-05-00492-3
- MathSciNet review: 2163382