Boundary rigidity and stability for generic simple metrics
HTML articles powered by AMS MathViewer
- by Plamen Stefanov and Gunther Uhlmann;
- J. Amer. Math. Soc. 18 (2005), 975-1003
- DOI: https://doi.org/10.1090/S0894-0347-05-00494-7
- Published electronically: July 5, 2005
- PDF | Request permission
Abstract:
We study the boundary rigidity problem for compact Riemannian manifolds with boundary $(M,g)$: is the Riemannian metric $g$ uniquely determined, up to an action of diffeomorphism fixing the boundary, by the distance function $\rho _g(x,y)$ known for all boundary points $x$ and $y$? We prove in this paper local and global uniqueness and stability for the boundary rigidity problem for generic simple metrics. More specifically, we show that there exists a generic set $\mathcal {G}$ of simple Riemannian metrics such that for any $g_0\in \mathcal {G}$, any two Riemannian metrics in some neighborhood of $g_0$ having the same distance function, must be isometric. Similarly, there is a generic set of pairs of simple metrics with the same property. We also prove Hölder type stability estimates for this problem for metrics which are close to a given one in $\mathcal {G}$.References
- Yu. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl. 5 (1997), no. 6, 487–490 (1998). MR 1623603, DOI 10.1515/jiip.1997.5.6.487
- Vladimir I. Arnol′d, Ordinary differential equations, Springer Textbook, Springer-Verlag, Berlin, 1992. Translated from the third Russian edition by Roger Cooke. MR 1162307 [BG]BG I. N. Bernstein and M. L. Gerver, Conditions on distinguishability of metrics by hodographs. Methods and Algorithms of Interpretation of Seismological Information, Computerized Seismology 13, Nauka, Moscow, 50–73 (in Russian).
- G. Besson, G. Courtois, and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), no. 5, 731–799 (French). MR 1354289, DOI 10.1007/BF01897050 [B]B G. Beylkin, Stability and uniqueness of the solution of the inverse kinematic problem in the multidimensional case, J. Soviet Math. 21(1983), 251–254.
- Jan Boman and Eric Todd Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), no. 4, 943–948. MR 916130, DOI 10.1215/S0012-7094-87-05547-5 [Cr]Cr K. C. Creager, Anisotropy of the inner core from differential travel times of the phases PKP and PKIPK, Nature, 356(1992), 309–314.
- Christopher B. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990), no. 1, 150–169. MR 1036134, DOI 10.1007/BF02566599
- Christopher B. Croke, Rigidity and the distance between boundary points, J. Differential Geom. 33 (1991), no. 2, 445–464. MR 1094465
- Christopher B. Croke, Nurlan S. Dairbekov, and Vladimir A. Sharafutdinov, Local boundary rigidity of a compact Riemannian manifold with curvature bounded above, Trans. Amer. Math. Soc. 352 (2000), no. 9, 3937–3956. MR 1694283, DOI 10.1090/S0002-9947-00-02532-0
- Mikhael Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984 [H]H G. Herglotz, Über die Elastizität der Erde bei Berücksichtigung ihrer variablen Dichte, Zeitschr. fur Math. Phys. 52 (1905), 275–299.
- Matti Lassas, Vladimir Sharafutdinov, and Gunther Uhlmann, Semiglobal boundary rigidity for Riemannian metrics, Math. Ann. 325 (2003), no. 4, 767–793. MR 1974568, DOI 10.1007/s00208-002-0407-4
- René Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981/82), no. 1, 71–83 (French). MR 636880, DOI 10.1007/BF01389295
- C. B. Morrey Jr. and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math. 10 (1957), 271–290. MR 89334, DOI 10.1002/cpa.3160100204
- R. G. Muhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry, Dokl. Akad. Nauk SSSR 232 (1977), no. 1, 32–35 (Russian). MR 431074
- R. G. Muhometov, On a problem of reconstructing Riemannian metrics, Sibirsk. Mat. Zh. 22 (1981), no. 3, 119–135, 237 (Russian). MR 621466
- R. G. Muhometov and V. G. Romanov, On the problem of finding an isotropic Riemannian metric in an $n$-dimensional space, Dokl. Akad. Nauk SSSR 243 (1978), no. 1, 41–44 (Russian). MR 511273
- Adrian I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2) 128 (1988), no. 3, 531–576. MR 970610, DOI 10.2307/1971435
- Jean-Pierre Otal, Sur les longueurs des géodésiques d’une métrique à courbure négative dans le disque, Comment. Math. Helv. 65 (1990), no. 2, 334–347 (French). MR 1057248, DOI 10.1007/BF02566611
- L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh. 29 (1988), no. 3, 114–130, 221 (Russian); English transl., Siberian Math. J. 29 (1988), no. 3, 427–441 (1989). MR 953028, DOI 10.1007/BF00969652 [PU]PU L. Pestov and G. Uhlmann, Two dimensional simple compact manifolds with boundary are boundary rigid, to appear in Ann. Math.
- V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR 1374572, DOI 10.1515/9783110900095
- V. A. Sharafutdinov, A problem in integral geometry in a nonconvex domain, Sibirsk. Mat. Zh. 43 (2002), no. 6, 1430–1442 (Russian, with Russian summary); English transl., Siberian Math. J. 43 (2002), no. 6, 1159–1168. MR 1946241, DOI 10.1023/A:1021189922555
- Vladimir Sharafutdinov and Gunther Uhlmann, On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points, J. Differential Geom. 56 (2000), no. 1, 93–110. MR 1863022
- Plamen Stefanov and Gunther Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal. 154 (1998), no. 2, 330–358. MR 1612709, DOI 10.1006/jfan.1997.3188
- Plamen Stefanov and Gunther Uhlmann, Rigidity for metrics with the same lengths of geodesics, Math. Res. Lett. 5 (1998), no. 1-2, 83–96. MR 1618347, DOI 10.4310/MRL.1998.v5.n1.a7
- Plamen Stefanov and Gunther Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J. 123 (2004), no. 3, 445–467. MR 2068966, DOI 10.1215/S0012-7094-04-12332-2
- Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147, DOI 10.1007/978-1-4684-9320-7
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, University Series in Mathematics, Plenum Press, New York-London, 1980. Pseudodifferential operators. MR 597144, DOI 10.1007/978-1-4684-8780-0
- Gunther Uhlmann and Jenn-Nan Wang, Boundary determination of a Riemannian metric by the localized boundary distance function, Adv. in Appl. Math. 31 (2003), no. 2, 379–387. MR 2001620, DOI 10.1016/S0196-8858(03)00017-4
- Jenn-Nan Wang, Stability for the reconstruction of a Riemannian metric by boundary measurements, Inverse Problems 15 (1999), no. 5, 1177–1192. MR 1715358, DOI 10.1088/0266-5611/15/5/305 [WZ]WZ E. Wiechert and K. Zoeppritz, Uber Erdbebenwellen, Nachr. Koenigl. Gesellschaft Wiss., Goettingen 4(1907), 415-549.
Bibliographic Information
- Plamen Stefanov
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 166695
- Email: stefanov@math.purdue.edu
- Gunther Uhlmann
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 175790
- Email: gunther@math.washington.edu
- Received by editor(s): January 20, 2005
- Published electronically: July 5, 2005
- Additional Notes: The first author was partly supported by NSF Grant DMS-0400869
The second author was partly supported by NSF and a John Simon Guggenheim fellowship - © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 18 (2005), 975-1003
- MSC (2000): Primary 53C24, 53C20; Secondary 53C21, 53C65
- DOI: https://doi.org/10.1090/S0894-0347-05-00494-7
- MathSciNet review: 2163868