On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation
HTML articles powered by AMS MathViewer
- by Frank Merle and Pierre Raphael;
- J. Amer. Math. Soc. 19 (2006), 37-90
- DOI: https://doi.org/10.1090/S0894-0347-05-00499-6
- Published electronically: September 1, 2005
- PDF | Request permission
Abstract:
We consider the $L^2$ critical nonlinear Schrödinger equation $iu_t=-\Delta u-|u|^{\frac {4}{N}}u$ with initial condition in the energy space $u(0,x)=u_0\in H^1$ and study the dynamics of finite time blow-up solutions. In an earlier sequence of papers, the authors established for a certain class of initial data on the basis of dispersive properties in $L^2_{loc}$ a sharp and stable upper bound on the blow-up rate: $|\nabla u(t)|_{L^2}\leq C\left (\frac {\log |\log (T-t)|}{T-t}\right )^{\frac {1}{2}}$. In an earlier paper, the authors then addressed the question of a lower bound on the blow-up rate and proved for this class of initial data the nonexistence of self-similar solutions, that is, $\lim _{t\to T}\sqrt {T-t}|\nabla u(t)|_{L^2}=+\infty .$ In this paper, we prove the sharp lower bound \[ |\nabla u(t)|_{L^2}\geq C \left (\frac {\log |\log (T-t)|}{T-t}\right )^{\frac {1}{2}}\] by exhibiting the dispersive structure in the scaling invariant space $L^2$ for this log-log regime. In addition, we will extend to the pure energy space $H^1$ a dynamical characterization of the solitons among the zero energy solutions.References
- G. D. Akrivis, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput. 25 (2003), no. 1, 186–212. MR 2047201, DOI 10.1137/S1064827597332041
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- Jean Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197–215 (1998). Dedicated to Ennio De Giorgi. MR 1655515
- S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D 57 (1992), no. 1-2, 96–160. MR 1169619, DOI 10.1016/0167-2789(92)90090-A FMR Fibich, G.; Merle, F.; Raphaël, P., Numerical proof of a spectral property related to the singularity formation for the $L^2$ critical nonlinear Schrödinger equation, in preparation.
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Functional Analysis 32 (1979), no. 1, 1–32. MR 533218, DOI 10.1016/0022-1236(79)90076-4
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- M. J. Landman, G. C. Papanicolaou, C. Sulem, and P.-L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension, Phys. Rev. A (3) 38 (1988), no. 8, 3837–3843. MR 966356, DOI 10.1103/PhysRevA.38.3837
- Mihai Mariş, Existence of nonstationary bubbles in higher dimensions, J. Math. Pures Appl. (9) 81 (2002), no. 12, 1207–1239 (English, with English and French summaries). MR 1952162, DOI 10.1016/S0021-7824(02)01274-6
- Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 (2001), no. 1, 74–123. MR 1829643, DOI 10.1007/PL00001673
- Kevin McLeod, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^n$. II, Trans. Amer. Math. Soc. 339 (1993), no. 2, 495–505. MR 1201323, DOI 10.1090/S0002-9947-1993-1201323-X
- F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), no. 2, 427–454. MR 1203233, DOI 10.1215/S0012-7094-93-06919-0
- Frank Merle and Pierre Raphael, Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002) Univ. Nantes, Nantes, 2002, pp. Exp. No. XII, 5. MR 1968208
- F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, 591–642. MR 1995801, DOI 10.1007/s00039-003-0424-9
- Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565–672. MR 2061329, DOI 10.1007/s00222-003-0346-z
- Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. MR 2116733, DOI 10.1007/s00220-004-1198-0
- Dmitry Pelinovsky, Radiative effects to the adiabatic dynamics of envelope-wave solitons, Phys. D 119 (1998), no. 3-4, 301–313. MR 1639310, DOI 10.1016/S0167-2789(98)00037-2 P Perelman, G., On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D, Ann. Henri Poincaré, 2 (2001), 605-673.
- Pierre Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, 577–609. MR 2122541, DOI 10.1007/s00208-004-0596-0
- Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
- Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
Bibliographic Information
- Frank Merle
- Affiliation: Université de Cergy–Pontoise, Cergy-Pointoise, France, Institute for Advanced Studies and Centre National de la Recherche Scientifique
- MR Author ID: 123710
- Pierre Raphael
- Affiliation: Université de Cergy–Pontoise, Cergy-Pointoise, France, Institute for Advanced Studies and Centre National de la Recherche Scientifique
- Received by editor(s): March 2, 2004
- Published electronically: September 1, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 37-90
- MSC (2000): Primary 35Q55; Secondary 35Q51, 35B05
- DOI: https://doi.org/10.1090/S0894-0347-05-00499-6
- MathSciNet review: 2169042