Long arithmetic progressions in sumsets: Thresholds and bounds
HTML articles powered by AMS MathViewer
- by E. Szemerédi and V. Vu;
- J. Amer. Math. Soc. 19 (2006), 119-169
- DOI: https://doi.org/10.1090/S0894-0347-05-00502-3
- Published electronically: September 13, 2005
- PDF | Request permission
Abstract:
For a set $A$ of integers, the sumset $lA =A+\dots +A$ consists of those numbers which can be represented as a sum of $l$ elements of $A$: \[ lA =\{a_1+\dots + a_l| a_i \in A_i \}. \] Closely related and equally interesting notion is that of $l^{\ast }A$, which is the collection of numbers which can be represented as a sum of $l$ different elements of $A$: \[ l^{\ast }A =\{a_1+\dots + a_l| a_i \in A_i, a_i \neq a_j \}. \] The goal of this paper is to investigate the structure of $lA$ and $l^{\ast }A$, where $A$ is a subset of $\{1,2, \dots , n\}$. As application, we solve two conjectures by Erdös and Folkman, posed in 1960s.References
- George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067
- Yuri Bilu, Structure of sets with small sumset, Astérisque 258 (1999), xi, 77–108 (English, with English and French summaries). Structure theory of set addition. MR 1701189
- J. Bourgain, On arithmetic progressions in sums of sets of integers, A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, pp. 105–109. MR 1117007
- J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged) 21 (1960), 111–124. MR 130236
- Mei-Chu Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002), no. 3, 399–419. MR 1909605, DOI 10.1215/S0012-7094-02-11331-3
- Yong-Gao Chen, On subset sums of a fixed set, Acta Arith. 106 (2003), no. 3, 207–211. MR 1957105, DOI 10.4064/aa106-3-1
- J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), no. 2, 140–146. MR 1272299, DOI 10.1112/blms/26.2.140
- P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7 (1961/62), 345–354. MR 144846, DOI 10.4064/aa-7-4-345-354
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- G. A. Freiman, H. Halberstam, and I. Z. Ruzsa, Integer sum sets containing long arithmetic progressions, J. London Math. Soc. (2) 46 (1992), no. 2, 193–201. MR 1182477, DOI 10.1112/jlms/s2-46.2.193
- Gregory A. Freiman, New analytical results in subset-sum problem, Discrete Math. 114 (1993), no. 1-3, 205–217. Combinatorics and algorithms (Jerusalem, 1988). MR 1217753, DOI 10.1016/0012-365X(93)90367-3
- G. A. Freĭman, Foundations of a structural theory of set addition, Translations of Mathematical Monographs, Vol 37, American Mathematical Society, Providence, RI, 1973. Translated from the Russian. MR 360496
- Gregory A. Freiman, Structure theory of set addition, Astérisque 258 (1999), xi, 1–33 (English, with English and French summaries). Structure theory of set addition. MR 1701187
- Jon Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canadian J. Math. 18 (1966), 643–655. MR 199169, DOI 10.4153/CJM-1966-065-2
- R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275–285. MR 162759, DOI 10.1215/S0012-7094-64-03126-6
- B. Green, Arithmetic progressions in sumsets, Geom. Funct. Anal. 12 (2002), no. 3, 584–597. MR 1924373, DOI 10.1007/s00039-002-8258-4
- Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330, DOI 10.1007/978-1-4899-3585-4
- Norbert Hegyvári, On the representation of integers as sums of distinct terms from a fixed set, Acta Arith. 92 (2000), no. 2, 99–104. MR 1750309, DOI 10.4064/aa-92-2-99-104
- Vsevolod F. Lev and Pavel Y. Smeliansky, On addition of two distinct sets of integers, Acta Arith. 70 (1995), no. 1, 85–91. MR 1318763, DOI 10.4064/aa-70-1-85-91
- Vsevolod F. Lev, Optimal representations by sumsets and subset sums, J. Number Theory 62 (1997), no. 1, 127–143. MR 1430006, DOI 10.1006/jnth.1997.2012
- Tomasz Łuczak and Tomasz Schoen, On the maximal density of sum-free sets, Acta Arith. 95 (2000), no. 3, 225–229. MR 1793162, DOI 10.4064/aa-95-3-225-229
- John E. Olson, An addition theorem for the elementary Abelian group, J. Combinatorial Theory 5 (1968), 53–58. MR 227130, DOI 10.1016/S0021-9800(68)80028-6
- Carl Pomerance and András Sárközy, Combinatorial number theory, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 967–1018. MR 1373676
- I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994), no. 4, 379–388. MR 1281447, DOI 10.1007/BF01876039
- A. Sárközy, Finite addition theorems. I, J. Number Theory 32 (1989), no. 1, 114–130. MR 1002119, DOI 10.1016/0022-314X(89)90102-9
- E. Szemerédi, On a conjecture of Erdős and Heilbronn, Acta Arith. 17 (1970), 227–229. MR 268159, DOI 10.4064/aa-17-3-227-229 szemvu E. Szemerédi and V. H. Vu, Long arithmetic progressions in sumsets and the number of $x$-sum-free sets, Proceedings of London Mathematics Society 90 (2005), 273-296. szemvu2 E. Szemerédi and V. H. Vu, Finite and infinite arithmetic progressions in sumsets, to appear in Annals of Mathematics.
- R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997. MR 1435742, DOI 10.1017/CBO9780511470929 Vunew1 V. H. Vu, Olson’s theorem for cyclic groups, submitted. Vunew2 V. H. Vu, New results concerning subset sums, in preparation.
Bibliographic Information
- E. Szemerédi
- Affiliation: Department of Computer Science, Rutgers University, New Brunswick, New Jersey 08854
- Email: szemered@cs.rutgers.edu
- V. Vu
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112
- Email: vanvu@ucsd.edu, vanvu@math.rutgers.edu
- Received by editor(s): October 6, 2004
- Published electronically: September 13, 2005
- Additional Notes: The first author is supported by an NSF grant.
The second author is an A. Sloan Fellow and is supported by an NSF Career Grant. - © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 119-169
- MSC (2000): Primary 11B25, 11P70, 11B75
- DOI: https://doi.org/10.1090/S0894-0347-05-00502-3
- MathSciNet review: 2169044