Configurations, braids, and homotopy groups
HTML articles powered by AMS MathViewer
- by A. J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu;
- J. Amer. Math. Soc. 19 (2006), 265-326
- DOI: https://doi.org/10.1090/S0894-0347-05-00507-2
- Published electronically: November 18, 2005
- PDF | Request permission
Abstract:
The main results of this article are certain connections between braid groups and the homotopy groups of the $2$-sphere. The connections are given in terms of Brunnian braids over the disk and over the $2$-sphere. The techniques arise from the natural structure of simplicial and $\Delta$-structures on fundamental groups of configuration spaces.References
- ArtinE. Artin, Theorie der Zopfe, Hamburg Abh. 4 (1925), 47–72.
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 19087, DOI 10.2307/1969218
- M. G. Barratt and Peter J. Eccles, $\Gamma ^{+}$-structures. I. A free group functor for stable homotopy theory, Topology 13 (1974), 25–45. MR 348737, DOI 10.1016/0040-9383(74)90036-6
- D. J. Benson and F. R. Cohen, Mapping class groups of low genus and their cohomology, Mem. Amer. Math. Soc. 90 (1991), no. 443, iv+104. MR 1052554, DOI 10.1090/memo/0443
- Stephen J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), no. 2, 471–486. MR 1815219, DOI 10.1090/S0894-0347-00-00361-1
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. MR 375281
- C.-F. Bödigheimer, F. R. Cohen, and M. D. Peim, Mapping class groups and function spaces, Homotopy methods in algebraic topology (Boulder, CO, 1999) Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 17–39. MR 1831345, DOI 10.1090/conm/271/04348
- Raoul Bott, Configuration spaces and imbedding invariants, Turkish J. Math. 20 (1996), no. 1, 1–17. MR 1392659
- Raoul Bott and Alberto S. Cattaneo, Integral invariants of $3$-manifolds, J. Differential Geom. 48 (1998), no. 1, 91–133. MR 1622602
- A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457–479. MR 267586, DOI 10.1090/S0002-9947-1970-0267586-7
- A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The $\textrm {mod}-p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331–342. MR 199862, DOI 10.1016/0040-9383(66)90024-3
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Gunnar Carlsson, A simplicial group construction for balanced products, Topology 23 (1984), no. 1, 85–89. MR 721454, DOI 10.1016/0040-9383(84)90027-2
- Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002), 949–1000. MR 1936977, DOI 10.2140/agt.2002.2.949 CechE. Čech, Höherdimensionale homotopiegruppen, In: Verhandlungen des Internationalen Mathematikerkongress, Zürich, 1932, p.203. Orell Füssli (Zürich and Leipzig, 1932).
- Fred Cohen, Homology of $\Omega ^{(n+1)}\Sigma ^{(n+1)}X$ and $C_{(n+1)}X,\,n>0$, Bull. Amer. Math. Soc. 79 (1973), 1236–1241 (1974). MR 339176, DOI 10.1090/S0002-9904-1973-13394-4
- F. R. Cohen, On combinatorial group theory in homotopy, Homotopy theory and its applications (Cocoyoc, 1993) Contemp. Math., vol. 188, Amer. Math. Soc., Providence, RI, 1995, pp. 57–63. MR 1349129, DOI 10.1090/conm/188/02233 CWF. R. Cohen and J. Wu, Braid groups, free groups, and the loop space of the $2$-sphere, math.AT/0409307, preprint.
- F. R. Cohen and J. Wu, On braid groups, free groups, and the loop space of the 2-sphere, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001) Progr. Math., vol. 215, Birkhäuser, Basel, 2004, pp. 93–105. MR 2039761
- F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127–136. MR 19088, DOI 10.2307/1969219 CurtisE. B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209.
- Edward B. Curtis and Mark Mahowald, The unstable Adams spectral sequence for $S^3$, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 125–162. MR 1022678, DOI 10.1090/conm/096/1022678
- M. Davis, T. Januszkiewicz, and R. Scott, Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4 (1998), no. 4, 491–547. MR 1668119, DOI 10.1007/s000290050039
- Hans Debrunner, Links of Brunnian type, Duke Math. J. 28 (1961), 17–23. MR 137106
- Satyan L. Devadoss, Tessellations of moduli spaces and the mosaic operad, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 91–114. MR 1718078, DOI 10.1090/conm/239/03599
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Edward Fadell and James Van Buskirk, The braid groups of $E^{2}$ and $S^{2}$, Duke Math. J. 29 (1962), 243–257. MR 141128
- Toshitake Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), no. 1, 57–75 (French). MR 808109, DOI 10.1007/BF01394779
- Eva Maria Feichtner and Günter M. Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres, Doc. Math. 5 (2000), 115–139. MR 1752611
- Zbigniew Fiedorowicz and Jean-Louis Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 57–87. MR 998125, DOI 10.1090/S0002-9947-1991-0998125-4
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI 10.2307/2946631
- Richard Gillette and James Van Buskirk, The word problem and consequences for the braid groups and mapping class groups of the $2$-sphere, Trans. Amer. Math. Soc. 131 (1968), 277–296. MR 231894, DOI 10.1090/S0002-9947-1968-0231894-7 PHallP. Hall, A contribution to the theory of groups of prime power order, Proc. London. Math. Soc. 2 (1936), 29–95.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 448362
- Heinz Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. (2) 42 (1941), 22–52 (German). MR 4784, DOI 10.2307/1968985 HurewiczW. Hurewicz, Beiträge zur Topologie der deformationen I–IV, Nederl. Akad. Wetensch. Proc. Ser. A 38 (1936), 117-126, 215–224.
- I. M. James, On the suspension sequence, Ann. of Math. (2) 65 (1957), 74–107. MR 83124, DOI 10.2307/1969666
- D. L. Johnson, Towards a characterization of smooth braids, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 3, 425–427. MR 677467, DOI 10.1017/S0305004100060138
- Daniel M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282–312. MR 111032, DOI 10.2307/1970006
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- Frances Kirwan, Complex algebraic curves, London Mathematical Society Student Texts, vol. 23, Cambridge University Press, Cambridge, 1992. MR 1159092, DOI 10.1017/CBO9780511623929
- Toshitake Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), no. 1, 57–75 (French). MR 808109, DOI 10.1007/BF01394779
- Toshitake Kohno, Vassiliev invariants and de Rham complex on the space of knots, Symplectic geometry and quantization (Sanda and Yokohama, 1993) Contemp. Math., vol. 179, Amer. Math. Soc., Providence, RI, 1994, pp. 123–138. MR 1319605, DOI 10.1090/conm/179/01937
- Toshitake Kohno, Elliptic KZ system, braid group of the torus and Vassiliev invariants, Topology Appl. 78 (1997), no. 1-2, 79–94. Special issue on braid groups and related topics (Jerusalem, 1995). MR 1465026, DOI 10.1016/S0166-8641(96)00150-2
- Toshitake Kohno, Loop spaces of configuration spaces and finite type invariants, Invariants of knots and 3-manifolds (Kyoto, 2001) Geom. Topol. Monogr., vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. 143–160. MR 2002608, DOI 10.2140/gtm.2002.4.143
- Daan Krammer, Braid groups are linear, Ann. of Math. (2) 155 (2002), no. 1, 131–156. MR 1888796, DOI 10.2307/3062152
- H. Levinson, Decomposable braids and linkages, Trans. Amer. Math. Soc. 178 (1973), 111–126. MR 324684, DOI 10.1090/S0002-9947-1973-0324684-X
- Chengzhi Liang and Kurt Mislow, On Borromean links, J. Math. Chem. 16 (1994), no. 1-2, 27–35. MR 1304179, DOI 10.1007/BF01169193
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 422434
- Brian Mangum and Theodore Stanford, Brunnian links are determined by their complements, Algebr. Geom. Topol. 1 (2001), 143–152. MR 1823496, DOI 10.2140/agt.2001.1.143
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 222892
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 420609
- John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357–362. MR 84138, DOI 10.2307/1969967 MilnorJ. Milnor, On the construction $F[K]$, Algebraic Topology – A Student Guide, by J. F. Adams, Cambridge Univ. Press, 119–136. MooreJ. C. Moore, Homotopie des complexes monöidéaux, Séminaire Henri Cartan (1954–55). PoincareH. Poincaré, Analysis situs, J. École Polytech. (2) 1 (1895), 1–121.
- David E. Penney, Generalized Brunnian links, Duke Math. J. 36 (1969), 31–32. MR 238302
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 223432
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976. MR 515288 SatoT. Sato, On the group of morphisms of coalgebras, Ph.D. Thesis, Univ. Rochester, 2000.
- Paul Selick, A decomposition of $\pi _\ast (S^{2p+1};\,\textbf {Z}/p\textbf {Z})$, Topology 20 (1981), no. 2, 175–177. MR 605656, DOI 10.1016/0040-9383(81)90036-7
- Paul Selick and Jie Wu, On natural coalgebra decompositions of tensor algebras and loop suspensions, Mem. Amer. Math. Soc. 148 (2000), no. 701, viii+109. MR 1706247, DOI 10.1090/memo/0701
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Jeffrey Henderson Smith, Simplicial group models for $\Omega ^nS^nX$, Israel J. Math. 66 (1989), no. 1-3, 330–350. MR 1017171, DOI 10.1007/BF02765902
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210112
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, NJ, 1962. MR 143217
- Kim Whittlesey, Normal all pseudo-Anosov subgroups of mapping class groups, Geom. Topol. 4 (2000), 293–307. MR 1786168, DOI 10.2140/gt.2000.4.293
- Jie Wu, On fibrewise simplicial monoids and Milnor-Carlsson’s constructions, Topology 37 (1998), no. 5, 1113–1134. MR 1650351, DOI 10.1016/S0040-9383(97)00059-1
- J. Wu, Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 3, 489–513. MR 1816806, DOI 10.1017/S030500410100487X
- Jie Wu, A braided simplicial group, Proc. London Math. Soc. (3) 84 (2002), no. 3, 645–662. MR 1888426, DOI 10.1112/S0024611502013370 XM.A. Xicoténcatl, Orbit Configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces, Ph.D. Thesis, Univ. Rochester (1997).
- Miguel A. Xicoténcatl, The Lie algebra of the pure braid group, Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 1, 55–62. MR 1768508
Bibliographic Information
- A. J. Berrick
- Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
- Email: berrick@math.nus.edu.sg
- F. R. Cohen
- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- Email: cohf@math.rochester.edu
- Y. L. Wong
- Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
- Email: matwyl@nus.edu.sg
- J. Wu
- Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
- Email: matwuj@nus.edu.sg
- Received by editor(s): April 28, 2003
- Published electronically: November 18, 2005
- Additional Notes: Research of the first, third, and last authors is supported in part by the Academic Research Fund of the National University of Singapore R-146-000-048-112 and R-146-000-049-112.
The second author is partially supported by the US National Science Foundation grant DMS 0072173 and CNRS-NSF grant 17149 - © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 265-326
- MSC (2000): Primary 20F36, 55Q40, 55U10; Secondary 20F12, 20F14, 57M50
- DOI: https://doi.org/10.1090/S0894-0347-05-00507-2
- MathSciNet review: 2188127