Global $F$-regularity of Schubert varieties with applications to $\mathcal {D}$-modules
HTML articles powered by AMS MathViewer
- by Niels Lauritzen, Ulf Raben-Pedersen and Jesper Funch Thomsen;
- J. Amer. Math. Soc. 19 (2006), 345-355
- DOI: https://doi.org/10.1090/S0894-0347-05-00509-6
- Published electronically: December 2, 2005
- PDF | Request permission
Abstract:
We prove that Schubert varieties are globally $F$-regular in the sense of Karen Smith. We apply this result to the category of equivariant and holonomic ${\mathcal {D}}$-modules on flag varieties in positive characteristic. Here recent results of Blickle are shown to imply that the simple ${\mathcal {D}}$-modules coincide with local cohomology sheaves with support in Schubert varieties. Using a local Grothendieck-Cousin complex, we prove that the decomposition of local cohomology sheaves with support in Schubert cells is multiplicity free.References
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- Manuel Blickle, The intersection homology $D$-module in finite characteristic, Math. Ann. 328 (2004), no. 3, 425–450. MR 2036330, DOI 10.1007/s00208-003-0492-z
- Rikard Bøgvad, Some results on $\scr D$-modules on Borel varieties in characteristic $p>0$, J. Algebra 173 (1995), no. 3, 638–667. MR 1327873, DOI 10.1006/jabr.1995.1107
- Rikard Bögvad, An analogue of holonomic $\scr D$-modules on smooth varieties in positive characteristics, Homology Homotopy Appl. 4 (2002), no. 2, 83–116. The Roos Festschrift volume, 1. MR 1918185, DOI 10.4310/hha.2002.v4.n2.a5
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 224620
- Matthew Emerton and Mark Kisin, The Riemann-Hilbert correspondence for unit $F$-crystals, Astérisque 293 (2004), vi+257 (English, with English and French summaries). MR 2071510
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, Mém. Soc. Math. France (N.S.) 38 (1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Masaki Kashiwara, Representation theory and $D$-modules on flag varieties, Astérisque 173-174 (1989), 9, 55–109. Orbites unipotentes et représentations, III. MR 1021510
- Masaki Kashiwara and Niels Lauritzen, Local cohomology and $\scr D$-affinity in positive characteristic, C. R. Math. Acad. Sci. Paris 335 (2002), no. 12, 993–996 (English, with English and French summaries). MR 1955575, DOI 10.1016/S1631-073X(02)02616-X
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- V. Lakshmibai and Peter Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices 12 (1998), 627–640. MR 1635873, DOI 10.1155/S1073792898000397
- Niels Lauritzen and Jesper Funch Thomsen, Line bundles on Bott-Samelson varieties, J. Algebraic Geom. 13 (2004), no. 3, 461–473. MR 2047677, DOI 10.1090/S1056-3911-03-00358-8
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI 10.2307/1971368
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Karen E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786505, DOI 10.1307/mmj/1030132733
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
Bibliographic Information
- Niels Lauritzen
- Affiliation: Institut for matematiske fag, Aarhus Universitet, Ny Munkegade, DK-8000 Århus, C Denmark
- Email: niels@imf.au.dk
- Ulf Raben-Pedersen
- Affiliation: Institut for matematiske fag, Aarhus Universitet, Ny Munkegade, DK-8000 Århus, C Denmark
- Email: ab061278@imf.au.dk
- Jesper Funch Thomsen
- Affiliation: Institut for matematiske fag, Aarhus Universitet, Ny Munkegade, DK-8000 Århus, C Denmark
- Email: funch@imf.au.dk
- Received by editor(s): February 18, 2004
- Published electronically: December 2, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 345-355
- MSC (2000): Primary 32C38, 14B15
- DOI: https://doi.org/10.1090/S0894-0347-05-00509-6
- MathSciNet review: 2188129