Curvature and injectivity radius estimates for Einstein 4-manifolds
HTML articles powered by AMS MathViewer
- by Jeff Cheeger and Gang Tian;
- J. Amer. Math. Soc. 19 (2006), 487-525
- DOI: https://doi.org/10.1090/S0894-0347-05-00511-4
- Published electronically: December 2, 2005
- PDF | Request permission
Abstract:
Let $M^4$ denote an Einstein $4$-manifold with Einstein constant, $\lambda$, normalized to satisfy $\lambda \in \{-3,0,3\}$. For $B_r(p)\subset M^4$, a metric ball, we prove a uniform estimate for the pointwise norm of the curvature tensor on $B_{\frac {1}{2}r}$, under the assumption that the $L_2$-norm of the curvature on $B_r(p)$ is less than a small positive constant, which is independent of $M^4$, and which in particular, does not depend on a lower bound on the volume of $B_r(p)$. In case $\lambda =-3$, we prove a lower injectivity radius bound analogous to that which occurs in the theorem of Margulis, for compact manifolds with negative sectional curvature, $-1\leq K_M<0$. These estimates provide key tools in the study of singularity formation for $4$-dimensional Einstein metrics. As one application among others, we give a natural compactification of the moduli space of Einstein metrics with negative Einstein constant on a given $M^4$.References
- [Ab]Ab U. Abresch, Über das glatten Riemannschen Metriken, Habilitationsschrift, Reinishen Friedrich-Wilhelms-Universität Bonn (1988).
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455–490. MR 999661, DOI 10.1090/S0894-0347-1989-0999661-1
- Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429–445. MR 1074481, DOI 10.1007/BF01233434
- M. T. Anderson, The $L^2$ structure of moduli spaces of Einstein metrics on $4$-manifolds, Geom. Funct. Anal. 2 (1992), no. 1, 29–89. MR 1143663, DOI 10.1007/BF01895705
- Michael T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applications, Math. Ann. 331 (2005), no. 4, 739–778. MR 2148795, DOI 10.1007/s00208-004-0603-5
- Michael T. Anderson and Jeff Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and $L^{n/2}$-norm of curvature bounded, Geom. Funct. Anal. 1 (1991), no. 3, 231–252. MR 1118730, DOI 10.1007/BF01896203
- Shigetoshi Bando, Atsushi Kasue, and Hiraku Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), no. 2, 313–349. MR 1001844, DOI 10.1007/BF01389045
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- David M. J. Calderbank and Henrik Pedersen, Selfdual Einstein metrics with torus symmetry, J. Differential Geom. 60 (2002), no. 3, 485–521. MR 1950174
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74. MR 263092, DOI 10.2307/2373498
- J. Cheeger, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal. 13 (2003), no. 1, 20–72. MR 1978491, DOI 10.1007/s000390300001
- Jeff Cheeger and Tobias H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189–237. MR 1405949, DOI 10.2307/2118589
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR 1484888
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. MR 1815410
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37–74. MR 1815411
- Jeff Cheeger, Tobias H. Colding, and Gang Tian, Constraints on singularities under Ricci curvature bounds, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 645–649 (English, with English and French summaries). MR 1447035, DOI 10.1016/S0764-4442(97)86982-0
- J. Cheeger, T. H. Colding, and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12 (2002), no. 5, 873–914. MR 1937830, DOI 10.1007/PL00012649
- Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of $L^2$-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1–34. MR 806699
- Jeff Cheeger and Mikhael Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. I, J. Differential Geom. 23 (1986), no. 3, 309–346. MR 852159
- Jeff Cheeger and Mikhael Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990), no. 1, 269–298. MR 1064875
- Jeff Cheeger and Mikhael Gromov, Chopping Riemannian manifolds, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85–94. MR 1173034
- Jeff Cheeger, Kenji Fukaya, and Mikhael Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 327–372. MR 1126118, DOI 10.1090/S0894-0347-1992-1126118-X
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jeff Cheeger and Gang Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994), no. 3, 493–571. MR 1296356, DOI 10.1007/BF01231543
- Jeff Cheeger and Gang Tian, Anti-self-duality of curvature and degeneration of metrics with special holonomy, Comm. Math. Phys. 255 (2005), no. 2, 391–417. MR 2129951, DOI 10.1007/s00220-004-1279-0
- Siu Yuen Cheng, Peter Li, and Shing Tung Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021–1063. MR 630777, DOI 10.2307/2374257
- Christopher B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 419–435. MR 608287
- G. W. Gibbons and S. W. Hawking, Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979), no. 3, 291–310. MR 535152
- M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), no. 2, 231–241. MR 540942
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- Mark Gross and P. M. H. Wilson, Large complex structure limits of $K3$ surfaces, J. Differential Geom. 55 (2000), no. 3, 475–546. MR 1863732
- Min-Chun Hong and Gang Tian, Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections, Math. Ann. 330 (2004), no. 3, 441–472. MR 2099188, DOI 10.1007/s00208-004-0539-9
- Claude LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 (1995), no. 1, 1–8. MR 1312972, DOI 10.4310/MRL.1995.v2.n1.a1
- Claude LeBrun, Einstein metrics, four-manifolds, and differential topology, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 235–255. MR 2039991, DOI 10.4310/SDG.2003.v8.n1.a8
- Peter Li and Richard Schoen, $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984), no. 3-4, 279–301. MR 766266, DOI 10.1007/BF02392380
- Joachim Lohkamp, Curvature $h$-principles, Ann. of Math. (2) 142 (1995), no. 3, 457–498. MR 1356779, DOI 10.2307/2118552
- Charles B. Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807–851. MR 27137, DOI 10.2307/1969401
- Hiraku Nakajima, Hausdorff convergence of Einstein $4$-manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 2, 411–424. MR 945886
- Richard Schoen and Karen Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geometry 17 (1982), no. 2, 307–335. MR 664498
- Clifford Henry Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822. MR 1306023, DOI 10.4310/MRL.1994.v1.n6.a15
- G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, DOI 10.1007/BF01231499
- Gang Tian and Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), no. 2, 357–415. MR 2138071, DOI 10.1007/s00222-004-0412-1 [TiVia2]TiVia2 G. Tian and J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Advances in Math. (to appear).
- Karen K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), no. 1, 11–29. MR 648355
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
- Deane Yang, Riemannian manifolds with small integral norm of curvature, Duke Math. J. 65 (1992), no. 3, 501–510. MR 1154180, DOI 10.1215/S0012-7094-92-06519-7
Bibliographic Information
- Jeff Cheeger
- Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
- MR Author ID: 47805
- Email: cheeger@cims.nyu.edu
- Gang Tian
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Department of Mathematics, Princeton University, Princeton, New Jersey, 08544
- MR Author ID: 220655
- Email: tian@math.princeton.edu
- Received by editor(s): December 2, 2004
- Published electronically: December 2, 2005
- Additional Notes: The first author was partially supported by NSF Grant DMS 0104128
The second author was partially supported by NSF Grant DMS 0302744 - © Copyright 2005 American Mathematical Society
- Journal: J. Amer. Math. Soc. 19 (2006), 487-525
- MSC (2000): Primary 53Cxx
- DOI: https://doi.org/10.1090/S0894-0347-05-00511-4
- MathSciNet review: 2188134