Variations of Hodge structures of a Teichmüller curve
HTML articles powered by AMS MathViewer
- by Martin Möller;
- J. Amer. Math. Soc. 19 (2006), 327-344
- DOI: https://doi.org/10.1090/S0894-0347-05-00512-6
- Published electronically: December 12, 2005
- PDF | Request permission
Abstract:
Teichmüller curves are geodesic discs in Teichmüller space that project to an algebraic curve in the moduli space $M_g$. We show that for all $g \geq 2$ Teichmüller curves map to the locus of real multiplication in the moduli space of abelian varieties. Observe that McMullen has shown that precisely for $g=2$ the locus of real multiplication is stable under the $\textrm {SL}_2({\mathbb {R}})$-action on the tautological bundle $\Omega M_g$. We also show that Teichmüller curves are defined over number fields and we provide a completely algebraic description of Teichmüller curves in terms of Higgs bundles. As a consequence we show that the absolute Galois group acts on the set of Teichmüller curves.References
- Paula Cohen and Jürgen Wolfart, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith. 56 (1990), no. 2, 93–110. MR 1075639, DOI 10.4064/aa-56-2-93-110
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- P. Deligne, Un théorème de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1–19 (French). MR 900821, DOI 10.1007/978-1-4899-6664-3_{1}
- G. Faltings, Arakelov’s theorem for abelian varieties, Invent. Math. 73 (1983), no. 3, 337–347. MR 718934, DOI 10.1007/BF01388431
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. MR 1760625, DOI 10.1215/S0012-7094-00-10321-3
- János Kollár, Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 361–398. MR 946244, DOI 10.2969/aspm/01010361 [Lo03]Lo03 Lochak, P., On arithmetic curves in the moduli space of curves, Journal of the Math. Inst. of Jussieu 4, No. 3 (2005), 443–508.
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885. MR 1992827, DOI 10.1090/S0894-0347-03-00432-6
- Curtis T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003), no. 2, 191–223. MR 2051398, DOI 10.1007/BF02392964 [McM3]McM3 McMullen, C., Dynamics of $\textrm {SL}_2({\mathbb {R}})$ over moduli space in genus two, preprint (2003).
- Ben Moonen, Linearity properties of Shimura varieties. I, J. Algebraic Geom. 7 (1998), no. 3, 539–567. MR 1618140
- Martin Möller, Teichmüller curves, Galois actions and $\widehat {GT}$-relations, Math. Nachr. 278 (2005), no. 9, 1061–1077. MR 2150378, DOI 10.1002/mana.200310292
- David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 347–351. MR 206003
- D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MR 248146, DOI 10.1007/BF01350672
- Chad Schoen, Varieties dominated by product varieties, Internat. J. Math. 7 (1996), no. 4, 541–571. MR 1408839, DOI 10.1142/S0129167X9600030X
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Paul Schmutz Schaller and Jürgen Wolfart, Semi-arithmetic Fuchsian groups and modular embeddings, J. London Math. Soc. (2) 61 (2000), no. 1, 13–24. MR 1745404, DOI 10.1112/S0024610799008315
- Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), no. 3, 713–770. MR 1040197, DOI 10.1090/S0894-0347-1990-1040197-8
- Goro Shimura, Moduli of abelian varieties and number theory, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 312–332. MR 237507
- John Smillie and Barak Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004), 249–260. MR 2085718, DOI 10.1007/BF02771535
- Kisao Takeuchi, On some discrete subgroups of $\textrm {SL}_{2}(R)$, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 97–100. MR 262171
- W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
- Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101, DOI 10.1007/978-3-642-61553-5
- Eckart Viehweg and Kang Zuo, A characterization of certain Shimura curves in the moduli stack of abelian varieties, J. Differential Geom. 66 (2004), no. 2, 233–287. MR 2106125 [ViZu05]ViZu05 Viehweg, E., Zuo, K., Numerical bounds for semi-stable families of curves or of higher-dimensional manifolds, preprint (2005).
Bibliographic Information
- Martin Möller
- Affiliation: Universität Essen, FB 6 (Mathematik), 45117 Essen, Germany
- Email: martin.moeller@uni-essen.de
- Received by editor(s): January 26, 2004
- Published electronically: December 12, 2005
- © Copyright 2005 American Mathematical Society
- Journal: J. Amer. Math. Soc. 19 (2006), 327-344
- MSC (2000): Primary 32G15; Secondary 14D07
- DOI: https://doi.org/10.1090/S0894-0347-05-00512-6
- MathSciNet review: 2188128